RESUMEN
The subfamily Molytinae (Coleoptera: Curculionidae), being the second largest group within the family Curculionidae, exhibits a diverse range of hosts and poses a serious threat to agricultural and forestry industries. We used 1,290 cytochrome c oxidase subunit I (COI) barcodes to assess the efficiency of COI barcodes in species differentiation and uncover cryptic species diversity within weevils of Molytinae. The average Kimura 2-parameter distances within species, genus, and subfamily were 2.90%, 11.0%, and 22.26%, respectively, indicating significant genetic differentiation at both levels. Moreover, there exists a considerable degree of overlap between intraspecific (0%-27.50%) and interspecific genetic distances (GDs; 0%-39.30%). The application of Automatic barcode gap discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Poisson Tree Processes (PTP), Bayesian Poisson Tree Processes (bPTP), and jMOTU resulted in the identification of 279, 275, 494, 322, 320, and 279 molecular operational taxonomic units, respectively. The integration of 6 methods successfully delimited species of Molytinae in 86.6% of all examined morphospecies, surpassing a threshold value of 3% GD (73.0%). A total of 28 morphospecies exhibiting significant intraspecific divergences were assigned to multiple MOTUs, respectively, suggesting the presence of cryptic diversity or population divergence. The identification of cryptic species within certain morphological species in this study necessitates further investigation through comprehensive taxonomic practices in the future.
Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Gorgojos , Animales , Gorgojos/genética , Gorgojos/clasificación , Complejo IV de Transporte de Electrones/genética , Variación Genética , FilogeniaRESUMEN
How invasive species cope with novel selective pressures with limited genetic variation is a fundamental question in molecular ecology. Several mechanisms have been proposed, but they can lack generality. Here, we addressed an alternative solution, polygenic adaptation, wherein traits that arise from multiple combinations of loci may be less sensitive to loss of variation during invasion. We tested the polygenic signal of environmental adaptation of Colorado potato beetle (CPB) introduced in Eurasia. Population genomic analyses showed declining genetic diversity in the eastward expansion of Eurasian populations, and weak population genetic structure (except for the invasion fronts in Asia). Demographic history showed that all populations shared a strong bottleneck about 100 years ago when CPB was introduced to Europe. Genome scans revealed a suite of genes involved in activity regulation functions that are plausibly related to cold stress, including some well-founded functions (e.g., the activity of phosphodiesterase, the G-protein regulator) and discrete functions. Such polygenic architecture supports the hypothesis that polygenic adaptation and potentially genetic redundancy can fuel the adaptation of CPB despite strong genetic depletion, thus representing a promising general mechanism for resolving the genetic paradox of invasion. More broadly, most complex traits based on polygenes may be less sensitive to invasive bottlenecks, thus ensuring the evolutionary success of invasive species in novel environments.
Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Escarabajos/genética , Herencia Multifactorial/genética , Especies Introducidas , Hidrolasas Diéster Fosfóricas/genéticaRESUMEN
We present an all-solid-state flexible and stretchable pseudocapacitor composed of dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS))-coated vertically aligned carbon nanotubes (VACNTs) partially embedded in a polydimethylsiloxane (PDMS) substrate. VACNTs are grown via atmospheric-pressure chemical vapor deposition on a Si/SiO2 substrate and transferred onto PDMS. Then, the PPy(DBS) film is coated with a surface charge of 300 mC cm-2 on individual carbon nanotubes (CNTs) via electropolymerization. The partial embedment of VACNTs in PDMS permits a rapid and facile integration of the PPy(DBS)/CNTs/PDMS structure to construct a flexible and stretchable supercapacitor electrode. The measured capacitance is 3.6 mF cm-2 with a PVA-KOH gel electrolyte at a scan rate of 100 mV s-1, which is maintained under stretching from 0% to 150% and bending/twisting angles from 0° to 180°. This all-solid-state stretchable supercapacitor shows a stable galvanostatic performance during 10 000 charge/discharge cycles with its capacitance retained at 109%.
RESUMEN
Low n-doping efficiency and inferior stability restrict the thermoelectric performance of n-type conjugated polymers, making their performance lag far behind of their p-type counterparts. Reported here are two rigid coplanar poly(p-phenylene vinylene) (PPV) derivatives, LPPV-1 and LPPV-2, which show nearly torsion-free backbones. The fused electron-deficient rigid structures endow the derivatives with less conformational disorder and low-lying lowest unoccupied molecular orbital (LUMO) levels, down to -4.49â eV. After doping, two polymers exhibited high n-doping efficiency and significantly improved air stability. LPPV-1 exhibited a high conductivity of up to 1.1â S cm-1 and a power factor as high as 1.96â µW m-1 K-2 . Importantly, the power factor of the doped LPPV-1 thick film degraded only 2 % after 7â day exposure to air. This work demonstrates a new strategy for designing conjugated polymers, with planar backbones and low LUMO levels, towards high-performance and potentially air-stable n-type polymer thermoelectrics.
RESUMEN
Extant stick and leaf insects commonly imitate twigs or leaves, with lateral lamellae used to enhance crypsis or achieve mimicry for protection. However, the origin and early evolution of such lateral expansions among Phasmatodea are unknown, because all known Mesozoic phasmatodeans hitherto lack preserved evidence of such structures. We report here the first Mesozoic stick insect, Elasmophasma stictum gen. et sp. nov., with well-preserved, thin, lateral lamellae on the thoracic pleura, the terga of abdominal segments I-X and the ventrolateral margins of all femora. This new species, from the mid-Cretaceous amber of northern Myanmar, has a clear, stick-like body and is assigned to Euphasmatodea. The abdominal structures of E. stictum exhibit traces of multiple expansions of the terga, suggesting that such structure might have been an early development of body expansions used to improve crypsis for stick or leaf insects when they sprawled on twigs or leaves.
Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Insectos/anatomía & histología , Ámbar , Animales , Insectos/clasificación , MianmarRESUMEN
Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 µm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.
RESUMEN
The codling moth Cydia pomonella (L.) is a worldwide pest of pome fruit. A better understanding of oviposition site selection by this insect would help management of this pest in orchards. Oviposition site selection of codling moth was assessed by manipulative experiments and field survey. In addition, the temperatures of different sites were recorded. Neonate infestation and egg hatching were tested to evaluate the consequences of oviposition site selection. The percentage of eggs laid on the shady side of apple clusters was significantly higher than on the sunny side. How.ever, this was not influenced by leaf surface turning. Percentage of eggs on upper and lower leaf surfaces was significantly influenced by leaf surface turning. Percentage of eggs on the lower leaf surface was significantly higher than turned lower leaf surface (â¼41.1% higher) and significantly higher (â¼35.5%) on the turned upper leaf surface on than upper leaf surfaces. There was no significant difference in neonate infestation between leaves and fruit, as well as between the upper and lower leaf surfaces. Number of eggs hatching on the shady side of clusters was significantly higher than on the sunny side (56.3% higher). In both the manipulative experiment and field survey, codling moths did not choose the sites with the highest mean temperature, but chose sites suitable for egg development and hatching. This indicates that in the field codling moth, oviposition site selection is not strictly thermophilous, but they look for the lower leaf surface on the shady side, which benefits the offspring.
Asunto(s)
Mariposas Nocturnas/fisiología , Oviposición , Hojas de la Planta/fisiología , Animales , Femenino , Larva/fisiología , Malus/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Dinámica Poblacional , TemperaturaRESUMEN
Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and correlative niche models to quantify and map the global patterns of the potential for establishment of codling moth (Cydia pomonella L.), a major pest of apples, peaches, pears, and other pome and stone fruits, and a quarantine pest in countries where it currently does not occur. The mechanistic model CLIMEX was calibrated using species-specific physiological tolerance thresholds, whereas the correlative model MaxEnt used species occurrences and climatic spatial data. Projected potential distribution from both models conformed well to the current known distribution of codling moth. None of the models predicted suitable environmental conditions in countries located between 20°N and 20°S potentially because of shorter photoperiod, and lack of chilling requirement (<60 d at ≤10°C) in these areas for codling moth to break diapause. Models predicted suitable conditions in South Korea and Japan where codling moth currently does not occur but where its preferred host species (i.e., apple) is present. Average annual temperature and latitude were the main environmental variables associated with codling moth distribution at global level. The predictive models developed in this study present the global risk of establishment of codling moth, and can be used for monitoring potential introductions of codling moth in different countries and by policy makers and trade negotiators in making science-based decisions.
Asunto(s)
Distribución Animal , Especies Introducidas , Mariposas Nocturnas/fisiología , Animales , Modelos Biológicos , Fotoperiodo , TemperaturaRESUMEN
Additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has drawn substantial attention in recent decades due to its efficiency and precise control in part fabrication. The limitations of conventional fabrication processes, especially regarding geometry complexity, supply chain, and environmental impact, have prompted the exploration of diverse AM technologies in electrochemistry. Especially, three ink-based AM techniques, binder jet printing (BJP), direct ink writing (DIW), and Inkjet Printing (IJP), have been extensively applied by numerous research teams to produce electrodes, catalyst scaffolds, supercapacitors, batteries, etc. BJP's versatility in utilizing a wide range of materials as powder feedstock promotes its potential for various electrode and battery applications. DIW and IJP stand out for their ability to handle multi-material manufacturing tasks and deliver high printing resolution. To capture recent advancements in this field, we present a comprehensive review of the applications of BJP, DIW, and IJP techniques in fabricating electrochemical devices and components. This review intends to provide an overview of the process-structure-property relationship in electrochemical materials and components across diverse applications manufactured using AM techniques. We delve into how the significantly improved design freedom over the structure offered by these ink-based AM techniques highlights the performance of electrochemical products. Moreover, we highlight their advantages in terms of material compatibility, geometry control, and cost-effectiveness. In specific cases, we also compare the performance of electrochemical components fabricated using AM and conventional manufacturing methods. Finally, we conclude this review article by offering some insights into the future development in this research field.
RESUMEN
The Chinese species of the highland weevil genus Pachynotus is revised, including a single known species, P.lampoglobus Chao & Y.-Q. Chen, 1980, and the descriptions of two new species, P.pilosussp. nov. and P.arcuatussp. nov. All Chinese Pachynotus species occur in Xizang (Tibet), China, and a key to these species is presented. Additionally, the COI sequences of two species, P.lampoglobus and P.pilosussp. nov., are provided, with details of the genetic distance.
RESUMEN
The Leptomias group represents one of the most diverse taxonomic group of weevils in the Qinghai-Tibet Plateau and its adjacent areas. Despite the potential of hidden diversity, relatively few comprehensive studies have been conducted on species diversity in this taxonomic group. In this study, we performed DNA barcoding analysis for species of the Leptomias group using a comprehensive DNA barcode dataset that included 476 sequences representing 54 morphospecies. Within the dataset, our laboratory contributed 474 sequences, and 390 sequences were newly generated for this study. The average Kimura 2-parameter distances among morphospecies and genera were 0.76% and 19.15%, respectively. In 94.4% of the species, the minimum interspecific distances exceeded the maximum intraspecific distances, indicating the presence of barcode gaps in most species of Leptomias group. The application of Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Bayesian Poisson tree processes, jMOTU, and Neighbor-joining tree methods revealed 45, 45, 63, 54, and 55 distinct clusters representing single species, respectively. Additionally, a total of four morphospecies, Leptomias kangmarensis, L. midlineatus, L. siahus, and L. sp.9RL, were found to be assigned to multiple subclade each, indicating the geographical divergences and the presence of cryptic diversity. Our findings of this study demonstrate that Qinghai-Tibet Plateau exhibits a higher species diversity of the Leptomias group, and it is imperative to investigate cryptic species within certain morphospecies using integrative taxonomic approaches in future studies. Moreover, the construction of a DNA barcode reference library presented herein establishes a robust foundational dataset to support forthcoming research on weevil taxonomy, phylogenetics, ecology, and evolution.
RESUMEN
Eggplant is one of the most important vegetables worldwide, with some varieties displaying prickles. These prickles, present on the leaves, stems, and fruit calyxes, posing challenges during cultivation, harvesting, and transportation, making them an undesirable agronomic trait. However, the genetic mechanisms underlying prickle morphogenesis in eggplant remain poorly understood, impeding genetic improvements. In this study, genetic analyses revealed that prickle morphogenesis is governed by a single dominant nuclear gene, termed PE (Prickly Eggplant). Subsequent bulk segregant RNA-sequencing (BSR-seq) and linkage analysis preliminarily mapped PE to chromosome 6. This locus was then fine mapped to a 9233 bp interval in a segregating population of 1109 plants, harboring only one candidate gene, SmLOG1, which encodes a LONELY GUY (LOG)-family cytokinin biosynthetic enzyme. Expression analyses via transcriptome and qRT-PCR demonstrate that SmLOG1 is predominantly expressed in immature prickles. CRISPR-Cas9 knockout experiments targeting SmLOG1 in prickly parental line 'PI 381159' abolished prickles across all tissues, confirming its critical role in prickle morphogenesis. Sequence analysis of SmLOG1 pinpointed variations solely within the non-coding region. We developed a cleaved amplified polymorphic sequences (CAPS) marker from a distinct SNP located at -735-bp within the SmLOG1 promoter, finding significant association with prickle variation in 190 eggplant germplasms. These findings enhance our understanding of the molecular mechanisms governing prickle development in eggplant and facilitate the use of marker-assisted selection (MAS) for breeding prickleless cultivars.
RESUMEN
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
RESUMEN
Biopesticides based on RNA interference (RNAi) took a major step forward with the first registration of a sprayable RNAi product, which targets the world's most damaging potato pest. Proactive resistance management is needed to delay the evolution of resistance by pests and sustain the efficacy of RNAi biopesticides.
Asunto(s)
Control Biológico de Vectores , Interferencia de ARN , Animales , Solanum tuberosum/genética , Control de Insectos/métodos , Resistencia a los Insecticidas/genética , Insectos/genéticaRESUMEN
This hypothesis-generating study aims to examine the extent to which computed tomography-assessed body composition phenotypes are associated with immune and PI3K/AKT signaling pathways in breast tumors. A total of 52 patients with newly diagnosed breast cancer were classified into four body composition types: adequate (lowest two tertiles of total adipose tissue [TAT]) and highest two tertiles of total skeletal muscle [TSM] areas); high adiposity (highest tertile of TAT and highest two tertiles of TSM); low muscle (lowest tertile of TSM and lowest two tertiles of TAT); and high adiposity with low muscle (highest tertile of TAT and lowest tertile of TSM). Immune and PI3K/AKT pathway proteins were profiled in tumor epithelium and the leukocyte-enriched stromal microenvironment using GeoMx (NanoString). Linear mixed models were used to compare log2-transformed protein levels. Compared with the normal type, the low muscle type was associated with higher expression of INPP4B (log2-fold change = 1.14, p = 0.0003, false discovery rate = 0.028). Other significant associations included low muscle type with increased CTLA4 and decreased pan-AKT expression in tumor epithelium, and high adiposity with increased CD3, CD8, CD20, and CD45RO expression in stroma (P<0.05; false discovery rate >0.2). With confirmation, body composition can be associated with signaling pathways in distinct components of breast tumors, highlighting the potential utility of body composition in informing tumor biology and therapy efficacies.
RESUMEN
Xenysmoderodes Yoshitake, 2007, belonging to the tribe Mecysmoderini, was described as a monotypic genus from Japan, including the species X. sasajii Yoshitake. Two new species, X. concavius sp. nov. and X. flos sp. nov., are described here from China, providing a new country record for this genus. We revise the description of the genus based on three species and present an updated key to the species.
Asunto(s)
Gorgojos/anatomía & histología , Gorgojos/clasificación , Distribución Animal , Animales , China , Femenino , Masculino , Especificidad de la Especie , Gorgojos/fisiologíaRESUMEN
The genus Rhinoncomimus Wagner, 1940 includes seven species from Eastern Asia. One new species, Rh. continuus sp. nov. from Yunnan, China, is described. Habitus photos, illustrations and descriptions of all species except Rh. rubripes Korotyaev, 2006 (a possible junior synonym of R. niger Chûjô and Morimoto, 1959) are provided in detail, as well as key to species and distribution maps. In addition, the host plant of the type species Rh. klapperichi Wagner, 1940, Polygonum hydropiper L. (Polygonaceae) is newly recorded.
Asunto(s)
Gorgojos/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Animales , China , Ecosistema , Femenino , Masculino , Gorgojos/anatomía & histologíaRESUMEN
The genus Pelenomus Thomson from China is revised and six species are found occurring in China. Among them, P. curvatus, sp. nov. is described from Yunnan province, and four species are newly recorded from China: P waltoni (Boheman, 1843), P. canaliculatus (Fåhraeus, 1843), P. quadricorniger (Colonnelli, 1986) and P roelofsi (Hustache, 1916). Taxonomic diagnosis, habitus photos, detailed illustrations and distribution map of each species are provided, as well as a key to all the Chinese species. This study raised the number of Chinese Pelenomus from one to six species.
Asunto(s)
Escarabajos/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , China , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Femenino , Masculino , Tamaño de los ÓrganosRESUMEN
The Chinese representatives of the entimine weevil genus Geotragus are here revised, including redescriptions of the two previously known species, G. himalayanus Boheman, 1845 and G tuberculatus Chen, 1990, and descriptions of three new species from the Hengduan Mountains, Yunnan province, China: G. brevidens sp. nov., G. declivis sp. nov. and G. rugosus sp. nov.. Diagnostic characters of the genus, a key to Chinese species of Geotragus and a checklist of the now 11 known world species are also provided.