Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Life Sci ; 210: 150-157, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30176247

RESUMEN

AIMS: This study aimed to identify the mechanism of how MG-132 stimulates cell death in SEB-1 sebocytes. MATERIALS AND METHODS: TUNEL staining and annexin-FITC/PI flow cytometry were utilized to examine the apoptotic cell number of SEB-1 sebocytes and HaCaT keratinocytes upon MG-132 and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. MTT assay and CCK-8 assay monitored the proliferative rate and viability of both cell lines with different treatment. Western blotting (WB) and qPCR were performed to detect the expression of TRAIL and members of Bcl-2 family at protein and gene level. Additionally, RNA interfering was used to knockdown the mRNA transcription of TRAIL and BIK gene. KEY FINDINGS: MG-132 treatment enhanced cell death in SEB-1 sebocytes but not in HaCaT keratinocytes. Meanwhile, TRAIL concentrations in SEB-1 sebocytes treated with MG-132 were markedly elevated. Furthermore, treatment with TRAIL or the TRAIL receptor-specific monoclonal antibody AY4 at various doses stimulated cell death in SEB-1 sebocytes in a time- and dose-dependent manner. Silencing of TRAIL restored the cell viability of SEB-1 cells to a normal level after MG-132 treatment. Combined treatment of SEB-1 sebocytes with TRAIL and MG-132 synergistically triggered cell death, suppressed cell proliferation and survival, and promoted BIK expression. Furthermore, BCL2 Interacting Killer (BIK) knockdown via RNA interference participated in the recovery of cell survival reduced by treatment with TRAIL and MG-132. SIGNIFICANCE: These findings suggest that treatment with the selective proteasome suppressor MG-132 and TRAIL induces cell death in sebocytes through upregulation of BIK, a member of the Bcl-2 family.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Queratinocitos/patología , Leupeptinas/farmacología , Proteínas de la Membrana/metabolismo , Glándulas Sebáceas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/metabolismo
2.
Angew Chem Int Ed Engl ; 40(17): 3201-3203, 2001 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29712046

RESUMEN

Fillings and cavities: Three novel pseudo-octahedral metal-organic frameworks, 1-3, consisting of macrometallacyclic noninterpenetrating meso networks and exhibiting weak antiferromagnetic interactions, have been constructed from CuII centers and structurally flexible R,S-bis(sulfinyl) ligands. Varying the chain length of ligands is found to control the cavity sizes of the networks.

3.
Dalton Trans ; (3): 464-74, 2005 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-15672190

RESUMEN

An investigation into the dependence of the framework formation of coordination architectures on ligand spacers and terminal groups was reported based on the self-assembly of AgClO4 and eight structurally related flexible dithioether ligands, RS(CH2)nSR (Lan, R = ethyl group; Lbn, R = benzyl group, n= 1-4). Eight novel metal-organic architectures, [Ag(La1)3/2ClO4]n (1a), [Ag2(La2)2(ClO4)2]2 (2a), [AgLa3ClO4]n (3a), {[Ag(La4)2]ClO4}n (4a), [AgLb1ClO4]2 (1b), [Ag(Lb2)2]ClO4 (2b), {[Ag(Lb3)3/2(ClO4)1/2](ClO4)1/2}n (3b) and [Ag(Lb4)3/2ClO4]n(4b), were synthesized and structurally characterized by X-ray crystallography. Structure diversities were observed for these complexes: 1a forms a 2-D (6,3) net, while 2a is a discrete tetranuclear complex, in which the AgI ion adopts linear and tetrahedral coordination modes, and the S donors in each ligand show monodentate terminal and mu2-S bridging coordination fashions; 3a has a chiral helical chain structure in which two homo-chiral right-handed single helical chains (Ag-La3-)n are bound together through mu2-S donors, and simultaneously gives rise to left-handed helical entity (Ag-S-)n. In 4a, left- and right-handed helical chains formed by the ligands bridging AgI centers are further linked alternately by single-bridging ligands to form a non-chiral 2-D framework. 1b has a dinuclear structure showing obvious ligand-sustained Ag-Ag interaction, while 2b is a mononuclear complex; 3b is a 3-D framework formed by ClO4- linking the 2-D (6,3) framework, which is similar to that of 1a, and 4b has a single, double-bridging chain structure in which 14-membered dinuclear ring units formed through two ligands bridging two AgI ions are further linked by single-bridging ligands. In addition, a systematic structural comparison of these complexes and other reported AgClO4 complexes of analogous dithioether ligands indicates that the ligand spacers and terminal groups take essential roles on the framework formation of the AgI complexes, and this present feasible ways for adjusting the structures of such complexes by modifying the ligand spacers and terminal groups.

4.
Inorg Chem ; 43(1): 237-44, 2004 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-14704073

RESUMEN

The reactions of meso-1,2-bis(ethylsulfinyl)ethane (meso-L) with Ln(ClO(4))(3) [Ln(NO(3))(3) or Ln(NCS)(3)] in MeOH and CHCl(3) gave a series of new lanthanide coordination polymers, [[Ln(micro-meso-L)(rac-L)(2)(CH(3)OH)(2)](ClO(4))(3)](n) [Ln: La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), and Yb (7)], [Yb(micro-meso-L)(1.5)(NO(3))(3)](n) (8), and [La(micro-meso-L)(2.5)(NCS)(3)](n) (9). All the structures were established by single-crystal X-ray diffraction. Complexes 1-7 are isostructural with infinite single micro-chain structure, in which the L ligands take two kinds of coordination modes: bidentate chelating and bis-monodentate bridging. Six sulfur atoms of the sulfoxide groups around each Ln(III) center adopt alternatively the same R or S configuration in the chain. In addition, the configuration change of partial ligands occurred from the meso to the rac form when reacting with Ln(ClO(4))(3). To our knowledge, this is the first example of disulfoxide complexes with two kinds of coordination modes and three kinds of configurations (R,R, S,S, and R,S) occurring simultaneously in the same complex. 8 exhibits single-double bridging chain structure, in which dinuclear macrometallacycles formed through bridging two Yb(III) by two meso-L ligands are further linked by another meso-L ligand. In 9 each La(III) ion is linked to five other La(III) ions by five meso-L ligands to form a 5-connected 2-D (3/4,5) network containing two types of macrometallacyclic arrays: quadrilateral and triangle grids. The structural differences among 1-7, 8, and 9 show that counteranions play important roles in the framework formation of such coordination polymers. In addition, the luminescent properties of 3 and 5 were also investigated.

5.
Inorg Chem ; 43(17): 5382-6, 2004 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-15310217

RESUMEN

Five new eclipsed two-dimensional (2D) coordination polymers, [[Cd(2)(TPT)(2)L(2)](GM(1))(3/2)(H(2)O)](infinity) (1) (TPT = terephthalate, L = 3-(2-pyridyl)pyrazole, GM(1) = terephthalic acid), [[Cd(TPT)L](GM(2))(H(2)O)(2)]( infinity) (2) (GM(2) = L = 3-(2-pyridyl)pyrazole), [[Cd(TPT)L](GM(3))(1/2)(H(2)O)](infinity) (3) (GM(3) = mesitylene), [[Cd(4)(TPT)(4)L(4)](GM(4))(7/2)](infinity) (4) (GM(4) = tetramethylbenzene), and [[Cd(TPT)L](GM(5))(1/2)](infinity) (5) (GM(5) = naphthalene), have been synthesized and characterized by X-ray diffraction. All the five complexes take the similar eclipsed 2D open-channel framework with different guest molecules included in the cavities of their channels. TGA analysis indicates that the eclipsed open-channel frameworks are thermally stable up to 300 degrees C. The porous property of the 2D framework of 5 was also investigated by the XRPD technique, which indicated that the guest molecules included in the open-channel frameworks are removable and the framework is maintained after the removal of the guest molecules. Moreover, complexes 1-5 also display strong blue emission in the solid state.

6.
Dalton Trans ; (5): 813-9, 2004 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-15252504

RESUMEN

Five novel Cd(II) coordination polymers with three structurally related flexible disulfoxide ligands, [[Cd(L1)3](ClO4)2]n (1), [[Cd(L2)3](ClO4)2(CHCl3)]n (2), [Cd(L2)(NO3)2(H2O)]n (3), [Cd2(L3)2(NO3)4]n (4) and [[Cd(L3)3](ClO4)2]n (5), where L1= 1,3-bis(phenylsulfinyl)propane, L2= 1,4-bis(phenylsulfinyl)butane and L3= 1,4-bis(ethylsulfinyl)butane, were synthesized and structurally determined by X-ray diffraction. Complex 1 has a 2D layer structure, in which part of the L1 ligands bridge the Cd(II) ions to form double-bridging chains and the other part of ligands link such chains to form a 2D framework. Complexes 2 and 5 are isomorphous, showing unusual 2D (3,6) network structures containing triangular grids. Complex 3 adopts a 2D (4,4) network formed by L2 linking the NO3- bridged (Cd-O-N-O-)n 1D zigzag chains. By contrast, is a 1D chain, in which two Cd(II) centers are bridged by mu2-O of sulfoxide groups to form a dinuclear unit, and L3 ligands link such dinuclear units to form a 1D double-bridging chain. The structural differences among such complexes show that the ligand nature and counter anions have important influences on the complex structures, which may provide a rational method for controlling the framework formation in metal-organic coordination polymers.

7.
Inorg Chem ; 42(23): 7422-30, 2003 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-14606838

RESUMEN

In our efforts to systematically investigate the effects of the linker units of flexible ligands and other factors on the structures of Ag(I) complexes with thioethers, five new flexible pyridyl thioether ligands, bis(2-pyridylthio)methane (L(1)()), 1,3-bis(2-pyridylthio)propane (L(3)()), 1,4-bis(2-pyridylthio)butane (L(4)), 1,5-bis(2-pyridylthio)pentane (L(5)), and 1,6-bis(2-pyridylthio)hexane (L(6)), have been designed and synthesized, and the reactions of these ligands with Ag(I) salts under varied conditions (varying the solvents and counteranions) lead to the formation of eight novel metal-organic coordination architectures from di- and trinuclear species to two-dimensional networks: [Ag(3)(L(1)())(2)(ClO(4))(2)](ClO(4)) (1), [[AgL(3)](ClO(4))]( infinity ) (2), [[Ag(2)(L(4))(2)](ClO(4))(2)(CHCl(3))]( infinity ) (3), [[AgL(4)](ClO(4))(C(3)H(6)O)]( infinity ) (4), [[Ag(2)L(4)](NO(3))(2)]( infinity ) (5), [Ag(2)L(4)()(CF(3)SO(3))(2)]( infinity ) (6), [[AgL(5)](ClO(4))(CHCl(3))](2) (7), and [[AgL(6)()](ClO(4))]( infinity ) (8). All the structures were established by single-crystal X-ray diffraction analysis. The coordination modes of these ligands were found to vary from N,N-bidentate to N,N,S-tridentate to N,N,S,S-tetradentate modes, while the Ag(I) centers adopt two-, three-, or four-coordination geometries with different coordination environments. The structural differences of 1, 2, 3, 7, and 8 indicate that the subtle variations on the spacer units can greatly affect the coordination modes of the terminal pyridylsulfanyl groups and the coordination geometries of Ag(I) ions. The structural differences of 3 and 4 indicate that solvents also have great influence on the structures of Ag(I) complexes, and the differences between 3, 5, and 6 show counteranion effects in polymerization of Ag(I) complexes. The influences of counterions and solvents on the frameworks of these complexes are probably based upon the flexibility of ligands and the wide coordination geometries of Ag(I) ions. The results of this study indicate that the frameworks of the Ag(I) complexes with pyridyl dithioethers could be adjusted by ligand modifications and variations of the complex formation conditions.

8.
Inorg Chem ; 41(13): 3477-82, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12079467

RESUMEN

The reactions of 1,4-bis(phenylthio)butane (L) with Ag(I) salts in varied conditions (varying the solvents, metal-to-ligand ratios, and counteranions) lead to the formation of four new two-dimensional (2D) coordination polymers with different network structures: [Ag(2)L(3)(ClO(4))(2)](infinity) 1, [Ag(2)L(3)(ClO(4))(2) x CH(3)OH](infinity) 2, [[AgL(2)](ClO(4))](infinity) 3, and [AgLNO(3)](infinity) 4. All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 1: triclinic, P-1, a = 11.0253(9) A, b = 11.3455(9) A, c = 11.5231(9) A, alpha = 93.931(2) degrees, beta = 92.689(2) degrees, gamma = 112.9810(10) degrees, Z = 2. 2: triclinic, P-1, a = 11.9147(13) A, b = 16.1534(17) A, c = 16.2259(17) A, alpha = 74.977(2) degrees, beta = 69.030(2) degrees, gamma = 69.986(2) degrees, Z = 2. 3: triclinic, P-1, a = 12.1617(9) A, b = 12.5054(10) A, c = 13.1547(10) A, alpha = 64.3370(10) degrees, beta =85.938 (2) degrees, gamma = 69.3010(10) degrees, Z = 2. 4: monoclinic, P2(1)/c, a = 5.4032(17) A, b = 16.974(6) A, c = 19.489(6) A, beta = 94.234(6) degrees, Z = 4. In all four complexes, each Ag(I) center has a tetracoordination geometry, and the 2D networks consist of fused large macrometallacyclic ring systems. The "hexagonal" 42-membered rings, Ag(6)L(6), observed in 1 and 2 are nearly identical, which could be considered as unique examples of self-sustaining noninterpenetrated frameworks formed with flexible ligands. The repeating rectangular 28-membered macrometallacycle, Ag(4)L(4), is the basis for the network of 3, in which the perchlorate anions occupy the voids to prevent the ring from collapsing. In 4, columns of the fused rectangular 22-membered rings, Ag(4)L(2)(NO(3))(2), are cross-linked through the L ligands to form a unique 2D network consisting of two types of 22-membered repeating units.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA