Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958506

RESUMEN

Nicotine-induced endoplasmic reticulum (ER) stress in retinal pigment epithelium (RPE) cells is thought to be one pathological mechanism underlying age-related macular degeneration (AMD). ERp29 attenuates tobacco extract-induced ER stress and mitigates tight junction damage in RPE cells. Herein, we aimed to further investigate the role of ERp29 in nicotine-induced ER stress and choroidal neovascularization (CNV). We found that the expression of ERp29 and GRP78 in ARPE-19 cells was increased in response to nicotine exposure. Overexpression of ERp29 decreased the levels of GRP78 and the C/EBP homologous protein (CHOP). Knockdown of ERp29 increased the levels of GRP78 and CHOP while reducing the viability of ARPE-19 cells under nicotine exposure conditions. In the ARPE-19 cell/macrophage coculture system, overexpression of ERp29 decreased the levels of M2 markers and increased the levels of M1 markers. The viability, migration and tube formation of human umbilical vein endothelial cells (HUVECs) were inhibited by conditioned medium from the ERp29-overexpressing group. Moreover, overexpression of ERp29 inhibits the activity and growth of CNV in mice exposed to nicotine in vivo. Taken together, our results revealed that ERp29 attenuated nicotine-induced ER stress, regulated macrophage polarization and inhibited CNV.


Asunto(s)
Neovascularización Coroidal , Nicotina , Animales , Humanos , Ratones , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Células Endoteliales de la Vena Umbilical Humana/patología , Nicotina/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Choque Térmico/metabolismo
2.
Angiogenesis ; 24(2): 363-377, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33201372

RESUMEN

NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidases playing an important role in many biological processes. Previously we have shown that Nox4 is highly expressed in retinal blood vessels and is upregulated in oxygen-induced retinopathy (OIR). However, the exact role of endothelial Nox4 in retinal angiogenesis remains elusive. Herein, using endothelial cell (EC)-specific Nox4 knockout (Nox4EC-KO) mice, we investigated the impact of endothelial Nox4 deletion on retinal vascular development and pathological angiogenesis during OIR. Our results show that deletion of Nox4 in ECs led to retarded retinal vasculature development with fewer, blunted-end tip cells and sparser, dysmorphic filopodia at vascular front, and reduced density of vascular network in superficial, deep, and intermediate layers in postnatal day 7 (P7), P12, and P17 retinas, respectively. In OIR, loss of endothelial Nox4 had no effect on hyperoxia-induced retinal vaso-obliteration at P9 but significantly reduced aberrant retinal neovascularization at P17 and decreased the deep layer capillary density at P25. Ex vivo study confirmed that lack of Nox4 in ECs impaired vascular sprouting. Mechanistically, loss of Nox4 significantly reduced expression of VEGF, p-VEGFR2, integrin αV, angiopoietin-2, and p-ERK1/2, attenuating EC migration and proliferation. Taken together, our results indicate that endothelial Nox4 is important for retinal vascular development and contributes to pathological angiogenesis, likely through regulation of VEGF/VEGFR2 and angiopoietin-2/integrin αV/ERK pathways. In addition, our study suggests that endothelial Nox4 appears to be essential for intraretinal revascularization after hypoxia. These findings call for caution on targeting endothelial Nox4 in ischemic/hypoxic retinal diseases.


Asunto(s)
Células Endoteliales/enzimología , Endotelio Vascular/enzimología , Eliminación de Gen , NADPH Oxidasa 4/metabolismo , Neovascularización Fisiológica , Neovascularización Retiniana/enzimología , Vasos Retinianos/crecimiento & desarrollo , Animales , Ratones , Ratones Noqueados , NADPH Oxidasa 4/genética , Neovascularización Retiniana/genética
3.
Diabetologia ; 62(3): 531-543, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30612139

RESUMEN

AIMS/HYPOTHESIS: Müller glia (MG) are major sources of retinal cytokines, and their activation is closely linked to retinal inflammation and vascular leakage in diabetic retinopathy. Previously, we demonstrated that X-box binding protein 1 (XBP1), a transcription factor activated by endoplasmic reticulum (ER) stress in diabetic retinopathy, is involved in regulation of inflammation in retinal endothelial cells. Now, we have explored the role of XBP1 and ER stress in the regulation of MG-derived proinflammatory factors, and their influence on vascular permeability in diabetic retinopathy. METHODS: MG-specific conditional Xbp1 knockout (Xbp1Müller-/-) mice were generated by crossing Xbp1 flox/flox mice with Müller-Cre transgenic mice. Diabetes was modelled by induction with streptozotocin, and retinal vascular permeability was measured with FITC-conjugated dextran 2 months after induction. Primary Müller cells were isolated from Xbp1Müller-/- and Xbp1Müller+/+ mice and exposed to hypoxia and high levels of glucose. Levels of ER-stress and inflammatory factors were examined by real-time PCR, western blotting or immunohistochemistry. RESULTS: Xbp1Müller-/- mice exhibited normal retinal development and retinal function and expressed similar levels of ER-stress and inflammatory genes to Xbp1Müller+/+ littermates. In diabetes-inducing conditions, compared with Xbp1Müller+/+ mice, Xbp1Müller-/- mice had higher mRNA levels of retinal Vegf (also known as Vegfa) and Tnf-α (also known as Tnf) and ER-stress marker genes Grp78 (also known as Hspa5), Atf4, Chop (also known as Ddit3) and Atf6 and higher protein levels of vascular endothelial growth factor (VEGF), TNF-α, phospho-c-Jun N-terminal kinase (JNK), 78 kDa glucose-regulated protein (GRP78), phospho-eukaryotic translation initiation factor (eIF)2α and activating transcription factor (ATF)6. Retinal vascular permeability was significantly higher in diabetic Xbp1Müller-/- mice than in diabetic Xbp1Müller+/+ mice (p < 0.01). Results obtained in vitro with primary Müller cells isolated from Xbp1Müller-/- mice confirmed higher expression levels of inflammatory and ER-stress markers (but not GRP78) than in cells from Xbp1Müller+/+ mice. Moreover, XBP1-deficient Müller cells were more susceptible to high-glucose- or hypoxia-induced ER stress and inflammation than cells from Xbp1Müller+/+ mice. Inhibition of ER stress with chemical chaperones suppressed hypoxia-induced VEGF and TNF-α production in XBP1-deficient Müller cells. CONCLUSIONS/INTERPRETATION: Our results have revealed an important role of XBP1 and ER stress in MG-driven retinal inflammation, and suggest that targeting ER stress may represent a promising approach for the prevention and treatment of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Inflamación/metabolismo , Retina/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Permeabilidad Capilar/fisiología , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/patología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/fisiología , Células Ependimogliales/patología , Inflamación/patología , Ratones , Retina/patología
4.
Adv Exp Med Biol ; 1074: 421-427, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721972

RESUMEN

The molecular chaperone endoplasmic reticulum protein 29 (ERp29) plays a critical role in protein folding, trafficking, and secretion. Though ubiquitously expressed, ERp29 is upregulated in response to ER stress and is found at higher levels in certain cell types such as secretory epithelial cells and neurons. As an ER resident protein, ERp29 shares many structural and functional similarities with protein disulfide isomerases, but is not regarded as part of this family due to several key differences. The broad expression and myriad roles of ERp29 coupled with its upregulation via the unfolded protein response (UPR) upon ER stress have implicated ERp29 in a range of cellular processes and diseases. We summarize the diverse activities of ERp29 in protein trafficking, cell survival and apoptosis, and ER homeostasis and highlight a potential role of ERp29 in neuroprotection in retinal and neurodegenerative diseases.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Enfermedades Neurodegenerativas/metabolismo , Degeneración Retiniana/metabolismo , Apoptosis , Reparación del ADN , Estrés del Retículo Endoplásmico , Células Epiteliales/metabolismo , Proteínas del Ojo/fisiología , Uniones Comunicantes/fisiología , Homeostasis , Humanos , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/terapia , Neuronas/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Degeneración Retiniana/prevención & control , Degeneración Retiniana/terapia , Respuesta de Proteína Desplegada
5.
J Biol Chem ; 290(9): 5367-80, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25568320

RESUMEN

Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.


Asunto(s)
Apoptosis/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Nicotiana/química , Humo , Respuesta de Proteína Desplegada/fisiología , Regulación hacia Arriba , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Depuradores de Radicales Libres/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Metilaminas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción del Factor Regulador X , Epitelio Pigmentado de la Retina/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box
6.
Diabetologia ; 58(9): 2181-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26063198

RESUMEN

AIMS/HYPOTHESIS: Bone marrow-derived circulating angiogenic cells (CACs) play an important role in vascular repair. In diabetes, compromised functioning of the CACs contributes to the development of diabetic retinopathy; however, the underlying mechanisms are poorly understood. We examined whether endoplasmic reticulum (ER) stress, which has recently been linked to endothelial injury, is involved in diabetic angiogenic dysfunction. METHODS: Flow cytometric analysis was used to quantify bone marrow-derived progenitors (Lin(-)/c-Kit(+)/Sca-1(+)/CD34(+)) and blood-derived CACs (Sca-1(+)/CD34(+)) in 15-month-old Lepr (db) (db/db) mice and in their littermate control (db/+) mice used as a model of type 2 diabetes. Markers of ER stress in diabetic (db/db) and non-diabetic (db/+) bone marrow-derived early outgrowth cells (EOCs) and retinal vascular density were measured. RESULTS: The numbers of bone-marrow progenitors and CACs were significantly reduced in db/db mice. Vascular density was markedly decreased in the retinas of db/db mice, and this was accompanied by vascular beading. Microglial activation was enhanced, as was the production of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). The production of ER stress markers (glucose-regulated protein-78 [GRP-78], phosphorylated inositol-requiring enzyme-1α [p-IRE-1α], phosphorylated eukaryotic translation initiation factor-2α [p-eIF2α], activating transcription factor-4 [ATF4], C/EBP homologous protein [CHOP] and spliced X-box binding protein-1 [XBP1s]) was significantly increased in bone marrow-derived EOCs from db/db mice. In addition, mouse EOCs cultured in high-glucose conditions demonstrated higher levels of ER stress, reduced colony formation, impaired migration and increased apoptosis, all of which were largely prevented by the chemical chaperone 4-phenylbutyrate. CONCLUSIONS/INTERPRETATION: Taken together, our results indicate that diabetes increases ER stress in bone marrow angiogenic progenitor cells. Thus, targeting ER stress may offer a new approach to improving angiogenic progenitor cell function and promoting vascular repair in diabetes.


Asunto(s)
Células de la Médula Ósea/citología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico , Células Madre/citología , Animales , Apoptosis , Glucemia/metabolismo , Movimiento Celular , Separación Celular , Células Endoteliales/citología , Citometría de Flujo , Ratones , Neovascularización Patológica , Fenilbutiratos/química , Vasos Retinianos/patología
7.
Exp Eye Res ; 138: 126-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149093

RESUMEN

CC chemokine ligand 2 (CCL2) recruits macrophages to reduce inflammatory responses. Decay-accelerating factor (DAF) is a membrane regulator of the classical and alternative pathways of complement activation. In view of the link between complement genes and retinal diseases, we evaluated the retinal phenotype of C57BL/6J mice and mice lacking Ccl2 and/or Daf1 at 12 months of age, using scanning laser ophthalmoscopic imaging, electroretinography (ERG), histology, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. In comparison to C57BL/6J mice, mutant mice had an increased number of autofluorescent foci, with the greatest number in the Ccl2(-/-)/Daf1(-/-) retina. ERG amplitudes in Ccl2(-/-)/Daf1(-/-), Ccl2(-/-) and Daf1(-/-) mice were reduced, with the greatest reduction in Ccl2(-/-)/Daf1(-/-) mice. TUNEL-positive cells were not seen in C57BL/6J retina, but were prevalent in the outer and inner nuclear layers of Ccl2(-/-)Daf1(-/-) mice and were present at reduced density in Ccl2(-/-) or Daf1(-/-) mice. Cell loss was most pronounced in the outer and inner nuclear layers of Ccl2(-/-)/Daf1(-/-) mice. The levels of the endoplasmic reticulum chaperone GPR78 and transcription factor ATF4 were significantly increased in the Ccl2(-/-)/Daf1(-/-) retina. In comparison to the C57BL/6J retina, the phosphorylation of NF-κB p65, p38, ERK and JNK was significantly upregulated while SIRT1 was significantly downregulated in the Ccl2(-/-)/Daf1(-/-) retina. Our results suggest that loss of Ccl2 and Daf1 causes retinal neuronal death and degeneration which is related to increased endoplasmic reticulum stress, oxidative stress and inflammation.


Asunto(s)
Antígenos CD55/fisiología , Quimiocina CCL2/fisiología , Degeneración Retiniana/etiología , Degeneración Retiniana/fisiopatología , Neuronas Retinianas/patología , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Electrorretinografía , Chaperón BiP del Retículo Endoplásmico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Choque Térmico/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Degeneración Retiniana/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Pediatr Diabetes ; 16(8): 600-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25293868

RESUMEN

BACKGROUND: Pigment epithelium-derived factor (PEDF) is a member of the serpin family secreted by adipocytes. Plasma PEDF is increased in obese children and adults. Adults with type 2 diabetes mellitus (T2DM) have higher circulating PEDF but there are no reports in children with T2DM. OBJECTIVE: To compare PEDF concentration in children with T2DM to normal weight and obese children without T2DM and determine associations with anthropometric or serum factors. METHODS: Participants were 34 obese children with T2DM diagnosed by American Diabetes Association (ADA) criteria, 61 normal weight [body mass index (BMI) 25-75 percentile] and 63 obese (BMI ≥ 95 percentile) children of age 8-18 yr. Plasma PEDF was measured in fasting plasma samples. Anthropometric, serum, and body composition (dual-energy x-ray absorptiometry, DXA) data were obtained for each subject to identify potential predictor variables. RESULTS: PEDF was 55% higher (p = 0.001) in the T2DM group compared with normal weight children, but did not differ from obese children. In the T2DM group, fat mass and lean mass both individually predicted PEDF (r² = 0.22 and 0.17, p = 0.02 and p < 0.01, respectively). PEDF was positively correlated with homeostatic model assessment - insulin resistance (HOMA-IR) when all groups were combined (r² = 0.15, p<0.001). CONCLUSIONS: Plasma PEDF was similar in the T2DM and obese groups, therefore, obesity, rather than diabetes, may account for the higher PEDF in children with T2DM compared with normal weight children. PEDF was positively associated with both lean mass and fat mass both of which may contribute to the circulating level of the protein, and potentially to PEDF's association with insulin resistance in obese children with and without diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Proteínas del Ojo/sangre , Factores de Crecimiento Nervioso/sangre , Obesidad/sangre , Obesidad/complicaciones , Serpinas/sangre , Adolescente , Composición Corporal , Proteína C-Reactiva/metabolismo , Niño , Estudios de Cohortes , Femenino , Humanos , Resistencia a la Insulina , Lípidos/sangre , Masculino
9.
Exp Eye Res ; 125: 30-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24792589

RESUMEN

The endoplasmic reticulum (ER) is the primary intracellular organelle responsible for protein and lipid biosynthesis, protein folding and trafficking, calcium homeostasis, and several other vital processes in cell physiology. Disturbance in ER function results in ER stress and subsequent activation of the unfolded protein response (UPR). The UPR up-regulates ER chaperones, reduces protein translation, and promotes clearance of cytotoxic misfolded proteins to restore ER homeostasis. If this vital process fails, the cell will be signaled to enter apoptosis, resulting in cell death. Sustained ER stress also can trigger an inflammatory response and exacerbate oxidative stress, both of which contribute synergistically to tissue damage. Studies performed over the past decade have implicated ER stress in a broad range of human diseases, including neurodegenerative diseases, cancer, diabetes, and vascular disorders. Several of these diseases also entail retinal dysfunction and degeneration caused by injury to retinal neurons and/or to the blood vessels that supply retinal cells with nutrients, trophic and homeostatic factors, oxygen, and other essential molecules, as well as serving as a conduit for removal of waste products and potentially toxic substances from the retina. Collectively, such injuries represent the leading cause of blindness world-wide in all age groups. Herein, we summarize recent progress on the study of ER stress and UPR signaling in retinal biology and discuss the molecular mechanisms and the potential clinical applications of targeting ER stress as a new therapeutic approach to prevent and treat neuronal degeneration in the retina.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Estrés Oxidativo/fisiología , Degeneración Retiniana/fisiopatología , Respuesta de Proteína Desplegada/fisiología , Humanos , Transducción de Señal/fisiología , eIF-2 Quinasa/fisiología
10.
PLoS One ; 19(5): e0303010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748682

RESUMEN

Diabetic Retinopathy (DR) is the leading cause of vision loss in working-age adults. The hallmark features of DR include vascular leakage, capillary loss, retinal ischemia, and aberrant neovascularization. Although the pathophysiology is not fully understood, accumulating evidence supports elevated reactive oxygen species associated with increased activity of NADPH oxidase 4 (Nox4) as major drivers of disease progression. Previously, we have shown that Nox4 upregulation in retinal endothelial cells by diabetes leads to increased vascular leakage by an unknown mechanism. Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface molecule that is highly expressed in endothelial cells and regulates endothelial barrier function. In the present study, using endothelial cell-specific human Nox4 transgenic (TG) mice and endothelial cell-specific Nox4 conditional knockout (cKO) mice, we investigated the impact of Nox4 upregulation on PECAM-1 expression in mouse retinas and brain microvascular endothelial cells (BMECs). Additionally, cultured human retinal endothelial cells (HRECs) transduced with adenovirus overexpressing human Nox4 were used in the study. We found that overexpression of Nox4 increases PECAM-1 mRNA but has no effect on its protein expression in the mouse retina, BMECs, or HRECs. Furthermore, PECAM-1 mRNA and protein expression was unchanged in BMECs isolated from cKO mice compared to wild type (WT) mice with or without 2 months of diabetes. Together, these findings do not support a significant role of Nox4 in the regulation of PECAM-1 expression in the diabetic retina and endothelial cells. Further studies are warranted to elucidate the mechanism of Nox4-induced vascular leakage by investigating other intercellular junctional proteins in endothelial cells and their implications in the pathophysiology of diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Células Endoteliales , NADPH Oxidasa 4 , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Regulación hacia Arriba , Animales , Humanos , Ratones , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Ratones Noqueados , Ratones Transgénicos , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Retina/metabolismo , Retina/patología
11.
Prog Retin Eye Res ; 98: 101231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092262

RESUMEN

The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.


Asunto(s)
Retinopatía Diabética , Degeneración Retiniana , Humanos , Degeneración Retiniana/metabolismo , Retinopatía Diabética/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/fisiología , Retina , Retículo Endoplásmico/metabolismo , Homeostasis/fisiología
12.
Biomed Opt Express ; 15(3): 1571-1584, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495683

RESUMEN

Mitochondrial morphology provides unique insights into their integrity and function. Among fluorescence microscopy techniques, 3D super-resolution microscopy uniquely enables the analysis of mitochondrial morphological features individually. However, there is a lack of tools to extract morphological parameters from super-resolution images of mitochondria. We report a quantitative method to extract mitochondrial morphological metrics, including volume, aspect ratio, and local protein density, from 3D single-molecule localization microscopy images, with single-mitochondrion sensitivity. We validated our approach using simulated ground-truth SMLM images of mitochondria. We further tested our morphological analysis on mitochondria that have been altered functionally and morphologically in controlled manners. This work sets the stage to quantitatively analyze mitochondrial morphological alterations associated with disease progression on an individual basis.

13.
Mol Vis ; 19: 39-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23335849

RESUMEN

PURPOSE: To investigate the effect of quinotrierixin, a previously reported inhibitor of X-box binding protein 1 (XBP1), on cell proliferation and viability in human retinal pigment epithelium (RPE) cells. METHODS: Subconfluent human RPE cells (ARPE-19) were exposed to quinotrierixin for 16-24 h. Cell proliferation was determined with 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, hemocytometer counts, and CyQUANT NF Cell Proliferation Assay. Apoptosis was detected with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling assay. XBP1 mRNA splicing and expression of endoplasmic reticulum stress response genes were determined in cells exposed to thapsigargin in the presence or absence of quinotrierixin. Overexpression of spliced XBP1 was achieved with adenovirus. RESULTS: Quinotrierixin reduced RPE cell proliferation in a dose-dependent manner without inducing apoptosis. In cells exposed to thapsigargin, quinotrierixin inhibited XBP1 mRNA splicing and PKR-like endoplasmic reticulum kinase activation, and reduced cellular and nuclear levels of spliced XBP1 and C/EBP homologous protein. Paradoxically, quinotrierixin exacerbated endoplasmic reticulum stress-induced phosphorylation of eIF2α, which in turn led to decreased protein translation. Overexpressing spliced XBP1 partially reversed the inhibition of cell proliferation by quinotrierixin. These results suggest that inhibiting XBP1 splicing contributes to quinotrierixin's negative effect on RPE cell proliferation, but other mechanisms such as reduction of protein translation are also involved. CONCLUSIONS: Quinotrierixin inhibits RPE cell proliferation and may be used as a novel antiproliferative drug for treating proliferative vitreoretinopathy. Future studies are needed to investigate the in vivo effect of quinotrierixin on RPE proliferation in animal models of proliferative vitreoretinopathy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Rifabutina/análogos & derivados , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Empalme del ARN/efectos de los fármacos , Factores de Transcripción del Factor Regulador X , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Rifabutina/farmacología , Tapsigargina/farmacología , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Proteína 1 de Unión a la X-Box , eIF-2 Quinasa/metabolismo
14.
Diabetes ; 72(1): 112-125, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321974

RESUMEN

NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in retinal endothelial cells (ECs) and is upregulated under hyperglycemic and hypoxic conditions. However, the role of endothelial Nox4 upregulation in long-term retinal blood vessel damage in diabetic retinopathy (DR) remains undefined. Here, we attempted to address this question using humanized EC-specific Nox4 transgenic (hNox4EC-Tg) and EC-specific Nox4 knockout (Nox4EC-KO) mouse models. Our results show that hNox4EC-Tg mice at age of 10-12 months exhibited increased tortuosity of retinal blood vessels, focal vascular leakage, and acellular capillary formation. In vitro study revealed enhanced apoptosis in brain microvascular ECs derived from hNox4EC-Tg mice, concomitant with increased mitochondrial ROS, elevated lipid peroxidation, decreased mitochondrial membrane potential, and reduced mitochondrial respiratory function. In contrast, EC-specific deletion of Nox4 decreased mitochondrial ROS generation, alleviated mitochondrial damage, reduced EC apoptosis, and protected the retina from acellular capillary formation and vascular hyperpermeability in a streptozotocin-induced diabetes mouse model. These findings suggest that sustained upregulation of Nox4 in the endothelium contributes to retinal vascular pathology in diabetes, at least in part, through impairing mitochondrial function. Normalization of Nox4 expression in ECs may provide a new approach for prevention of vascular injury in DR.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Ratones , Animales , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Células Endoteliales/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Retinopatía Diabética/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo
15.
Cells ; 12(12)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371028

RESUMEN

p58IPK is a multifaceted endoplasmic reticulum (ER) chaperone and a regulator of eIF2α kinases involved in a wide range of cellular processes including protein synthesis, ER stress response, and macrophage-mediated inflammation. Systemic deletion of p58IPK leads to age-related loss of retinal ganglion cells (RGC) and exacerbates RGC damage induced by ischemia/reperfusion and increased intraocular pressure (IOP), suggesting a protective role of p58IPK in the retina. However, the mechanisms remain elusive. Herein, we investigated the cellular mechanisms underlying the neuroprotection action of p58IPK using conditional knockout (cKO) mouse lines where p58IPK is deleted in retinal neurons (Chx10-p58IPK cKO) or in myeloid cells (Lyz2-p58IPK cKO). In addition, we overexpressed p58IPK by adeno-associated virus (AAV) in the retina to examine the effect of p58IPK on RGC survival after ocular hypertension (OHT) in wild type (WT) mice. Our results show that overexpression of p58IPK by AAV significantly improved RGC survival after OHT in WT mice, suggesting a protective effect of p58IPK on reducing RGC injury. Conditional knockout of p58IPK in retinal neurons or in myeloid cells did not alter retinal structure or cellular composition. However, a significant reduction in the b wave of light-adapted electroretinogram (ERG) was observed in Chx10-p58IPK cKO mice. Deletion of p58IPK in retinal neurons exacerbates RGC loss at 14 days after OHT. In contrast, deficiency of p58IPK in myeloid cells increased the microglia/macrophage activation but had no effect on RGC loss. We conclude that deletion of p58IPK in macrophages increases their activation, but does not influence RGC survival. These results suggest that the neuroprotective action of p58IPK is mediated by its expression in retinal neurons, but not in macrophages. Therefore, targeting p58IPK specifically in retinal neurons is a promising approach for the treatment of neurodegenerative retinal diseases including glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Animales , Ratones , Proteínas del Choque Térmico HSP40 , Activación de Macrófagos , Macrófagos/metabolismo , Microglía/metabolismo , Células Ganglionares de la Retina/metabolismo
16.
Invest Ophthalmol Vis Sci ; 64(14): 40, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015176

RESUMEN

Purpose: Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults characterized by retinal dysfunction and neurovascular degeneration. We previously reported that deletion of X-box binding protein 1 (XBP1) leads to accelerated retinal neurodegeneration in diabetes; however, the mechanisms remain elusive. The goal of this study is to determine the role of XBP1 in the regulation of photoreceptor synaptic integrity in early DR. Methods: Diabetes was induced by streptozotocin in retina-specific XBP1 conditional knockout (cKO) or wild-type (WT) mice to generate diabetic cKO (cKO/DM) or WT/DM mice for comparison with nondiabetic cKO (cKO/NDM) and WT/NDM mice. Retinal morphology, structure, and function were assessed by immunohistochemistry, optical coherence tomography, and electroretinogram (ERG) after 3 months of diabetes. The synapses between photoreceptors and bipolar cells were examined by confocal microscopy, and synaptic integrity was quantified using the QUANTOS algorithm. Results: We found a thinning of the outer nuclear layer and a decline in the b-wave amplitude in dark- and light-adapted ERG in cKO/DM mice compared to all other groups. In line with these changes, cKO mice showed increased loss of synaptic integrity compared to WT mice, regardless of diabetes status. In searching for candidate molecules responsible for the loss of photoreceptor synaptic integrity in diabetic and XBP1-deficient retinas, we found decreased mRNA and protein levels of DLG4/PSD-95 in cKO/DM retina compared to WT/DM. Conclusions: These findings suggest that XBP1 is a crucial regulator in maintaining synaptic integrity and retinal function, possibly through regulation of synaptic scaffold proteins.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Proteína 1 de Unión a la X-Box , Animales , Ratones , Algoritmos , Retinopatía Diabética/genética , Electrorretinografía , Retina , Proteína 1 de Unión a la X-Box/genética
17.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067097

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of blindness, and elucidating its underlying disease mechanisms is vital to the development of appropriate therapeutics. We identified differentially expressed genes (DEGs) and differentially spliced genes (DSGs) across the clinical stages of AMD in disease-affected tissue, the macular retina pigment epithelium (RPE)/choroid and the macular neural retina within the same eye. We utilized 27 deeply phenotyped donor eyes (recovered within a 6 h postmortem interval time) from Caucasian donors (60-94 years) using a standardized published protocol. Significant findings were then validated in an independent set of well-characterized donor eyes (n = 85). There was limited overlap between DEGs and DSGs, suggesting distinct mechanisms at play in AMD pathophysiology. A greater number of previously reported AMD loci overlapped with DSGs compared to DEGs between disease states, and no DEG overlap with previously reported loci was found in the macular retina between disease states. Additionally, we explored allele-specific expression (ASE) in coding regions of previously reported AMD risk loci, uncovering a significant imbalance in C3 rs2230199 and CFH rs1061170 in the macular RPE/choroid for normal eyes and intermediate AMD (iAMD), and for CFH rs1061147 in the macular RPE/choroid for normal eyes and iAMD, and separately neovascular AMD (NEO). Only significant DEGs/DSGs from the macular RPE/choroid were found to overlap between disease states. STAT1, validated between the iAMD vs. normal comparison, and AGTPBP1, BBS5, CERKL, FGFBP2, KIFC3, RORα, and ZNF292, validated between the NEO vs. normal comparison, revealed an intricate regulatory network with transcription factors and miRNAs identifying potential upstream and downstream regulators. Findings regarding the complement genes C3 and CFH suggest that coding variants at these loci may influence AMD development via an imbalance of gene expression in a tissue-specific manner. Our study provides crucial insights into the multifaceted genomic underpinnings of AMD (i.e., tissue-specific gene expression changes, potential splice variation, and allelic imbalance), which may open new avenues for AMD diagnostics and therapies specific to iAMD and NEO.


Asunto(s)
D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Degeneración Macular Húmeda , Humanos , Alelos , Inhibidores de la Angiogénesis , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Expresión Génica , Proteínas del Citoesqueleto , Proteínas de Unión a Fosfato , Proteínas Portadoras , Proteínas del Tejido Nervioso , Proteínas de Unión al GTP
18.
J Biol Chem ; 286(6): 4912-21, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21138840

RESUMEN

Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, we investigated the role of X-box binding protein 1 (XBP1) in retinal adhesion molecule expression, leukostasis, and vascular leakage. Exposure of human retinal endothelial cells to low dose ER stress inducers resulted in a robust activation of XBP1 but did not affect inflammatory gene expression. However, ER stress preconditioning almost completely abolished TNF-α-elicited NF-κB activation and adhesion molecule ICAM-1 and VCAM-1 expression. Pharmaceutical inhibition of XBP1 activation or knockdown of XBP1 by siRNA markedly attenuated the effects of preconditioning on inflammation. Moreover, loss of XBP1 led to an increase in ICAM-1 and VCAM-1 expression. Conversely, overexpression of spliced XBP1 attenuated TNF-α-induced phosphorylation of IKK, IκBα, and NF-κB p65, accompanied by decreased NF-κB activity and reduced adhesion molecule expression. Finally, in vivo studies show that activation of XBP1 by ER stress preconditioning prevents TNF-α-induced ICAM-1 and VCAM-1 expression, leukostasis, and vascular leakage in mouse retinas. These results collectively indicate a protective effect of ER stress preconditioning against retinal endothelial inflammation, which is likely through activation of XBP1-mediated unfolded protein response (UPR) and inhibition of NF-κB activation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Retinopatía Diabética/metabolismo , Endotelio Vascular/metabolismo , Vasos Retinianos/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Animales , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Endotelio Vascular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Molécula 1 de Adhesión Intercelular/biosíntesis , Molécula 1 de Adhesión Intercelular/genética , Ratones , Factores de Transcripción del Factor Regulador X , Vasos Retinianos/patología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Molécula 1 de Adhesión Celular Vascular/genética , Proteína 1 de Unión a la X-Box
19.
Mol Neurodegener ; 17(1): 25, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346303

RESUMEN

BACKGROUND: The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. METHOD: We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. RESULTS AND CONCLUSION: We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.


Asunto(s)
Degeneración Retiniana , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Mamíferos , Degeneración Retiniana/metabolismo , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada
20.
Neural Regen Res ; 17(9): 1875-1880, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35142661

RESUMEN

Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA