Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273106

RESUMEN

Emerging evidence suggests that the gut microbiota is closely related to psychiatric disorders. However, little is known about the role of the gut microbiota in the development of obsessive-compulsive disorder (OCD). Here, to investigate the contribution of gut microbiota to the pathogenesis of OCD, we transplanted fecal microbiota from first-episode, drug-naive OCD patients or demographically matched healthy individuals into antibiotic-treated specific pathogen-free (SPF) mice and showed that colonization with OCD microbiota is sufficient to induce core behavioral deficits, including abnormal anxiety-like and compulsive-like behaviors. The fecal microbiota was analyzed using 16 S rRNA full-length sequencing, and the results demonstrated a clear separation of the fecal microbiota of mice colonized with OCD and control microbiota. Notably, microbiota from OCD-colonized mice resulted in injured neuronal morphology and function in the mPFC, with inflammation in the mPFC and colon. Unbiased metabolomic analyses of the serum and mPFC region revealed the accumulation of succinic acid (SA) in OCD-colonized mice. SA impeded neuronal activity and induced an inflammatory response in both the colon and mPFC, impacting intestinal permeability and brain function, which act as vital signal mediators in gut microbiota-brain-immune crosstalk. Manipulations of dimethyl malonate (DM) have been reported to exert neuroprotective effects by suppressing the oxidation of accumulated succinic acid, attenuating the downstream inflammatory response and neuronal damage, and can help to partly improve abnormal behavior and reduce neuroinflammation and intestinal inflammation in OCD-colonized mice. We propose that the gut microbiota likely regulates brain function and behaviors in mice via succinic acid signaling, which contributes to the pathophysiology of OCD through gut-brain crosstalk and may provide new insights into the treatment of this disorder.

2.
Genomics ; 116(2): 110821, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447684

RESUMEN

Prefoldin Subunit 5 (PFDN5) plays a critical role as a member of the prefoldins (PFDNs) in maintaining a finely tuned equilibrium between protein production and degradation. However, there has been no comprehensive analysis specifically focused on PFDN5 thus far. Here, a comprehensive multi-omics (transcriptomics, genomics, and proteomics) analysis, systematic molecular biology experiments (in vitro and in vivo), transcriptome sequencing and PCR Array were performed for identifying the value of PFDN5 in pan-cancer, especially in Gastric Cancer (GC). We found PFDN5 had the potential to serve as a prognostic and therapeutic biomarker in GC. And PFDN5 could promote the proliferation of GC cells, primarily by affecting the cell cycle, cell death and immune process etc. These findings provide novel insights into the molecular mechanisms and precise treatments of in GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Pronóstico , Multiómica , Genómica , Biomarcadores
3.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240634

RESUMEN

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

4.
Carcinogenesis ; 45(4): 262-273, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37997385

RESUMEN

OBJECTIVES: There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS: TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS: There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS: ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Neoplasias de la Mama Triple Negativas/genética , Dactinomicina/farmacología , Dactinomicina/metabolismo , Dactinomicina/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ratones Desnudos , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Doxorrubicina/farmacología , Apoptosis , ARN Interferente Pequeño
5.
J Am Chem Soc ; 146(20): 14136-14148, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38642063

RESUMEN

An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.

6.
Small ; 20(25): e2308265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225704

RESUMEN

Bispecific antibodies possess exceptional potential as therapeutic agents due to their capacity to bind to two different antigens simultaneously. However, challenges pertain to unsatisfactory stability, manufacturing complexity, and limited tumor penetration hinder their broad applicability. In this study, a versatile technology is presented for the rapid generation of bispecific nanobody-aptamer conjugates with efficient tumor penetration. The approach utilizes microbial transglutaminase (MTGase) and click chemistry to achieve site-specific conjugation of nanobodies and aptamers, which are termed nanotamers. The nanotamers recognize and bind to two types of molecular targets expressed on cancer cells. As a prototype, a bispecific nanotamer is developed that binds both clusters of differentiation 47 (CD47) and mesenchymal epithelial transition receptor (Met) expressed on the tumor cell membrane. This CD47-Met nanotamer demonstrates high affinity and specificity toward tumor cells expressing both targets, exhibits improved receptor functional inhibition through a strong steric hindrance effect. Moreover, its capacity for deep tumor penetration greatly enhances the impact of conventional chemotherapy on antitumor efficacy. The as-developed nanotamer synthesis approach shows promise to customize bispecific molecular probes targeting different cancer types and different therapeutic goals.


Asunto(s)
Anticuerpos Biespecíficos , Aptámeros de Nucleótidos , Neoplasias , Anticuerpos de Dominio Único , Humanos , Aptámeros de Nucleótidos/química , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Neoplasias/tratamiento farmacológico , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Línea Celular Tumoral , Animales
7.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35233612

RESUMEN

Explosively emerging SARS-CoV-2 variants challenge current nomenclature schemes based on genetic diversity and biological significance. Genomic composition-based machine learning methods have recently performed well in identifying phenotype-genotype relationships. We introduced a framework involving dinucleotide (DNT) composition representation (DCR) to parse the general human adaptation of RNA viruses and applied a three-dimensional convolutional neural network (3D CNN) analysis to learn the human adaptation of other existing coronaviruses (CoVs) and predict the adaptation of SARS-CoV-2 variants of concern (VOCs). A markedly separable, linear DCR distribution was observed in two major genes-receptor-binding glycoprotein and RNA-dependent RNA polymerase (RdRp)-of six families of single-stranded (ssRNA) viruses. Additionally, there was a general host-specific distribution of both the spike proteins and RdRps of CoVs. The 3D CNN based on spike DCR predicted a dominant type II adaptation of most Beta, Delta and Omicron VOCs, with high transmissibility and low pathogenicity. Type I adaptation with opposite transmissibility and pathogenicity was predicted for SARS-CoV-2 Alpha VOCs (77%) and Kappa variants of interest (58%). The identified adaptive determinants included D1118H and A570D mutations and local DNTs. Thus, the 3D CNN model based on DCR features predicts SARS-CoV-2, a major type II human adaptation and is qualified to predict variant adaptation in real time, facilitating the risk-assessment of emerging SARS-CoV-2 variants and COVID-19 control.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/genética , Niño , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
8.
Nat Mater ; 22(1): 100-108, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36266572

RESUMEN

Iridium-based electrocatalysts remain the only practical anode catalysts for proton exchange membrane (PEM) water electrolysis, due to their excellent stability under acidic oxygen evolution reaction (OER), but are greatly limited by their high cost and low reserves. Here, we report a nickel-stabilized, ruthenium dioxide (Ni-RuO2) catalyst, a promising alternative to iridium, with high activity and durability in acidic OER for PEM water electrolysis. While pristine RuO2 showed poor acidic OER stability and degraded within a short period of continuous operation, the incorporation of Ni greatly stabilized the RuO2 lattice and extended its durability by more than one order of magnitude. When applied to the anode of a PEM water electrolyser, our Ni-RuO2 catalyst demonstrated >1,000 h stability under a water-splitting current of 200 mA cm-2, suggesting potential for practical applications. Density functional theory studies, coupled with operando differential electrochemical mass spectroscopy analysis, confirmed the adsorbate-evolving mechanism on Ni-RuO2, as well as the critical role of Ni dopants in stabilization of surface Ru and subsurface oxygen for improved OER durability.

9.
Cancer Cell Int ; 24(1): 69, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341584

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS: CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS: AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION: Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.

10.
Arch Biochem Biophys ; 757: 110029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729594

RESUMEN

Endothelial cells play an important role in the metabolism of adipose tissue (AT). This study aimed to analyze the changes that adipose tissue in AT endothelial cells undergo during the development of obesity, using single-nucleus RNA sequence (snRNA-seq). Mouse paraepididymal AT cells were subjected to snRNA-seq with the 10X Genomics platform. The cell types were then clustered using t-distributed stochastic neighbor embedding and unbiased computational informatics analyses. Protein-protein interactions network was established using the STRING database and visualized using Cytoscape. The dataset was subjected to differential gene enrichment analysis. In total, 21,333 cells acquired from 24 mouse paraepididymal AT samples were analyzed using snRNA-seq. This study identified 18 distinct clusters and annotated macrophages, fibroblasts, epithelial cells, T cells, endothelial cells, stem cells, neutrophil cells, and neutrophil cell types based on representative markers. Cluster 12 was defined as endothelial cells. The proportion of endothelial cells decreased with the development of obesity. Inflammatory factors, such as Vegfa and Prdm16 were upregulated in the medium obesity group but downregulated in the obesity group. Genes, such as Prox1, Erg, Flt4, Kdr, Flt1, and Pecam1 promoted the proliferation of AT endothelial cells and maintained the internal environment of AT. This study established a reference model and general framework for studying the mechanisms, biomarkers, and therapeutic targets of endothelial cell dysfunction-related diseases at the single-cell level.


Asunto(s)
Tejido Adiposo , Proliferación Celular , Células Endoteliales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Obesidad , Animales , Ratones , Células Endoteliales/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Masculino , Ratones Endogámicos C57BL , Transcriptoma , Análisis de la Célula Individual
11.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704108

RESUMEN

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Asunto(s)
Estrógenos , Terapia por Ejercicio , Trastornos Mentales , Animales , Humanos , Estrógenos/metabolismo , Ejercicio Físico/fisiología , Trastornos Mentales/metabolismo , Trastornos Mentales/terapia , Receptores de Estrógenos/metabolismo , Transducción de Señal
12.
J Org Chem ; 89(12): 8871-8877, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38837353

RESUMEN

Magterpenes A-C (1-3), three unprecedented meroterpenoids featuring a unique 6/6/6/6/6 polycyclic skeleton, were isolated from the ethanol extract of Magnolia officinalis Rehd. et Wils. The compounds were obtained as racemic mixtures that were completely resolved through chiral columns. Their structures were elucidated by extensive analyses of one-dimensional (1D) and 2D nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, chemical calculations of 1H/13C NMR, and electronic circular dichroism calculations. The compounds were constructed via two Diels-Alder reactions in the proposed biosynthetic pathway. All isolates were evaluated for their nephroprotective and hepatoprotective activities. The results demonstrated that (+)-1 and (-)-1 possessed promising nephroprotective activities in a dose-dependent manner, while (-)-2 and (+)-3 exhibited moderate hepatoprotective activities.


Asunto(s)
Magnolia , Terpenos , Magnolia/química , Terpenos/química , Terpenos/farmacología , Terpenos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
13.
J Org Chem ; 89(3): 1633-1647, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38235569

RESUMEN

A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

14.
Fish Shellfish Immunol ; 146: 109372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218420

RESUMEN

The large yellow croaker (Larimichthys crocea) stands as a cornerstone of mariculture in China due to its significant value. However, the threat of Pseudomonas plecoglossicida infection looms large, capable of triggering "visceral white spot disease" and subsequently inflicting severe economic ramifications. Through a prior genome-wide association analysis (GWAS) aimed at understanding the resistance of the large yellow croaker to this ailment, a pivotal player emerged: the complement component 1q binding protein, aptly named LcC1qbp. This protein assumes a crucial role in the activation of the complement system. This study delves deeper into the immune response by examining the expression patterns of LcC1QBP when confronted with P. plecoglossicida. The investigation into gene expression patterns reveals LcC1qbp's widespread presence, with its highest transcriptional abundance identified in the kidney tissues. Upon infection by P. plecoglossicida, the up-regulation of LcC1qbp in major immune organs manifests at both the transcriptional and translational levels. In the context of RNA interference, transcriptome analysis of C1qbp in HEK 293T cells uncovers 1327 differentially expressed genes (DEGs), featuring 41 significant immune genes. This includes pivotal components such as C1S and C3 of the complement system, along with IL11, IL12RB2, and Myd88, among others. The outcomes of enrichment analysis spotlight the prevalence of DEGs within key pathways like immune system development, myeloid leukocyte-mediated immunity, MAPK signaling, and other immune-related routes. By unveiling the immune response mechanisms of the large yellow croaker to P. plecoglossicida infection, this study bolsters our understanding. Furthermore, it lays the groundwork for pursuing effective strategies in both preventing and treating "visceral white spot disease" in the large yellow croaker.


Asunto(s)
Enfermedades de los Peces , Perciformes , Infecciones por Pseudomonas , Animales , Estudio de Asociación del Genoma Completo , Pseudomonas/genética , Inmunidad , Perciformes/genética , Proteínas de Peces/genética
15.
Acta Pharmacol Sin ; 45(1): 209-222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749236

RESUMEN

Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 µM. Furthermore, we found that S670 (6 µM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Autofagosomas/metabolismo , Amidas/farmacología , Transducción de Señal , Lisosomas/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Qa-SNARE
16.
Neurosurg Rev ; 47(1): 71, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285088

RESUMEN

We aim to share our experience of the removal of cranio-orbital lesions (COLs) and propose a novel classification to guide the tailored approach selection. We retrospectively reviewed 45 consecutive patients with COLs who underwent surgery performed by the same neurosurgeon between November 2010 and November 2022. The surgical approach was selected according to the anatomical region classification of the COLs. For lesions limited to space A (lateral superior orbital fissure, SOF), the pterion or extended pterion approach (PA or EPA) was used. For lesions limited to space B (extraconal compartment medial SOF, and cavernous sinus CS) and C (intraconal compartment, medial SOF, and CS), the pretemporal transcavernous approach (PTCA) was used. For lesions limited to space D (intraconal compartment and optic canals), the subfrontal approach (SA) was used. For lesions extending into the infratemporal fossa (ITF), the cranio-orbito-zygomatic approach (COZA) was used. For lesions involving pterygopalatine fossa (PPF), the endoscopic transnasal approach (ETNA) was used. We analyzed the clinical manifestations, imaging data, surgical approaches, surgical outcomes, neurological outcomes, and follow-up data. Gross total resection was performed in 35 patients (35/45, 77.8%). SA, PA, EPA, PTCA, COZA, and ETNA were performed in 9, 9, 10, 10, 6, and 1 case(s), respectively. Progression of the residual tumor was observed in 6 cases (1 adenoid cystic carcinoma and 5 meningiomas). Surgical approach selection plays a vital role in patient prognosis. This novel classification based on the involvement of anatomic space could help surgeons select an appropriate approach to remove the COLs.


Asunto(s)
Seno Cavernoso , Neoplasias Meníngeas , Meningioma , Humanos , Estudios Retrospectivos , Neoplasia Residual
17.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34675076

RESUMEN

Myopia is a leading cause of visual impairment and blindness worldwide. However, a safe and accessible approach for myopia control and prevention is currently unavailable. Here, we investigated the therapeutic effect of dietary supplements of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on myopia progression in animal models and on decreases in choroidal blood perfusion (ChBP) caused by near work, a risk factor for myopia in young adults. We demonstrated that daily gavage of ω-3 PUFAs (300 mg docosahexaenoic acid [DHA] plus 60 mg eicosapentaenoic acid [EPA]) significantly attenuated the development of form deprivation myopia in guinea pigs and mice, as well as of lens-induced myopia in guinea pigs. Peribulbar injections of DHA also inhibited myopia progression in form-deprived guinea pigs. The suppression of myopia in guinea pigs was accompanied by inhibition of the "ChBP reduction-scleral hypoxia cascade." Additionally, treatment with DHA or EPA antagonized hypoxia-induced myofibroblast transdifferentiation in cultured human scleral fibroblasts. In human subjects, oral administration of ω-3 PUFAs partially alleviated the near-work-induced decreases in ChBP. Therefore, evidence from these animal and human studies suggests ω-3 PUFAs are potential and readily available candidates for myopia control.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Miopía/prevención & control , Administración Oral , Animales , Transdiferenciación Celular , Células Cultivadas , Coroides/irrigación sanguínea , Suplementos Dietéticos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Cobayas , Humanos , Hipoxia/dietoterapia , Hipoxia/fisiopatología , Hipoxia/prevención & control , Ratones , Miofibroblastos/patología , Miopía/dietoterapia , Miopía/fisiopatología , Adulto Joven
18.
Am J Otolaryngol ; 45(4): 104342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38703609

RESUMEN

OBJECTIVE: To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS: The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS: In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS: The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.


Asunto(s)
Inteligencia Artificial , Laringoscopía , Leucoplasia , Pliegues Vocales , Humanos , Pliegues Vocales/diagnóstico por imagen , Pliegues Vocales/patología , Laringoscopía/métodos , Masculino , Leucoplasia/diagnóstico , Leucoplasia/patología , Femenino , Persona de Mediana Edad , Anciano , Diagnóstico por Computador/métodos , Aprendizaje Automático , Diagnóstico Diferencial , Adulto , Algoritmos , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/diagnóstico por imagen
19.
Chem Biodivers ; 21(4): e202301979, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38302832

RESUMEN

Acetyl-11-keto-ß-boswellic acid (AKBA) is known to inhibit the growth of glioblastoma (GBM) cells and subcutaneous GBM. A series of acetyl-11-keto-ß-boswellic acid (AKBA) derivatives containing the oxime-ester functionality or amide side chains were synthesized, and their anti-GBM activities were evaluated. Some of these compounds exhibited significant inhibitory activity against cell proliferation in U87 and U251 GBM cell lines, with IC50 values in the micromolar concentration range. Cellular thermal shift analysis showed that A-01 and A-10 improved the thermal stability of FOXM1, indicating that these highly active compounds may directly bind to FOXM1 in cells. Docking studies of the two most active compounds, A-01 and A-10, revealed key interactions between these compounds and the active site of FOXM1, in which the amide moiety at the C-24 position was essential for improving the activity. These results suggested that A-10 is a suitable lead molecule for the development of FOXM1 inhibitors. Thus, the rational design of AKBA derivatives with amide side chains holds significant potential for discovering of a new class of triterpenoids capable of inhibiting GBM cell proliferation.


Asunto(s)
Autoanticuerpos , Bencenoacetamidas , Glioblastoma , Piperidonas , Triterpenos , Humanos , Glioblastoma/tratamiento farmacológico , Triterpenos/química , Línea Celular Tumoral , Amidas
20.
Ren Fail ; 46(1): 2349122, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721891

RESUMEN

Background: During the acute heart failure (AHF), acute kidney injury (AKI) is highly prevalent in critically ill patients. The occurrence of the latter condition increases the risk of mortality in patients with acute heart failure. The current research on the relationship between nutritional risk and the occurrence of acute kidney injury in patients with acute heart failure is very limited. Methods: This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV, version 2.1) database. We included adult patients with AHF who were admitted to the intensive care unit in the study. Results: A total of 1310 critically ill patients with acute heart failure were included. The AUC of geriatric nutritional risk index (GNRI) (0.694) is slightly superior to that of controlling nutritional status (CONUT) (0.656) and prognostic nutritional index (PNI) (0.669). The Log-rank test revealed a higher risk of acute kidney injury in patients with high nutritional risk (p < 0.001). Multivariate COX regression analysis indicated that a high GNRI (adjusted HR 0.62, p < 0.001) was associated with a reduced risk of AKI during hospitalization in AHF patients. The final subgroup analysis demonstrated no significant interaction of GNRI in all subgroups except for diabetes subgroup and ventilation subgroup (P for interaction: 0.057-0.785). Conclusion: Our study findings suggest a correlation between GNRI and the occurrence of acute kidney injury in patients hospitalized with acute heart failure.


Asunto(s)
Lesión Renal Aguda , Enfermedad Crítica , Insuficiencia Cardíaca , Unidades de Cuidados Intensivos , Evaluación Nutricional , Estado Nutricional , Humanos , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/complicaciones , Femenino , Masculino , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Estudios Retrospectivos , Anciano , Unidades de Cuidados Intensivos/estadística & datos numéricos , Persona de Mediana Edad , Anciano de 80 o más Años , Factores de Riesgo , Medición de Riesgo , Evaluación Geriátrica , Pronóstico , Modelos de Riesgos Proporcionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA