Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7897): 510-517, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140399

RESUMEN

Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions1-5, diffuse hypermutation termed omikli6, and longer strand-coordinated events termed kataegis3,7-9. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer10. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity6, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA.


Asunto(s)
Neoplasias , Desaminasas APOBEC/genética , Genoma , Humanos , Mutación INDEL , Mutagénesis/genética , Mutación , Neoplasias/genética
2.
Am J Hum Genet ; 109(12): 2210-2229, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423637

RESUMEN

The most recent genome-wide association study (GWAS) of cutaneous melanoma identified 54 risk-associated loci, but functional variants and their target genes for most have not been established. Here, we performed massively parallel reporter assays (MPRAs) by using malignant melanoma and normal melanocyte cells and further integrated multi-layer annotation to systematically prioritize functional variants and susceptibility genes from these GWAS loci. Of 1,992 risk-associated variants tested in MPRAs, we identified 285 from 42 loci (78% of the known loci) displaying significant allelic transcriptional activities in either cell type (FDR < 1%). We further characterized MPRA-significant variants by motif prediction, epigenomic annotation, and statistical/functional fine-mapping to create integrative variant scores, which prioritized one to six plausible candidate variants per locus for the 42 loci and nominated a single variant for 43% of these loci. Overlaying the MPRA-significant variants with genome-wide significant expression or methylation quantitative trait loci (eQTLs or meQTLs, respectively) from melanocytes or melanomas identified candidate susceptibility genes for 60% of variants (172 of 285 variants). CRISPRi of top-scoring variants validated their cis-regulatory effect on the eQTL target genes, MAFF (22q13.1) and GPRC5A (12p13.1). Finally, we identified 36 melanoma-specific and 45 melanocyte-specific MPRA-significant variants, a subset of which are linked to cell-type-specific target genes. Analyses of transcription factor availability in MPRA datasets and variant-transcription-factor interaction in eQTL datasets highlighted the roles of transcription factors in cell-type-specific variant functionality. In conclusion, MPRAs along with variant scoring effectively prioritized plausible candidates for most melanoma GWAS loci and highlighted cellular contexts where the susceptibility variants are functional.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Estudio de Asociación del Genoma Completo , Bioensayo , Factores de Transcripción , Receptores Acoplados a Proteínas G , Melanoma Cutáneo Maligno
3.
Hum Mol Genet ; 31(20): 3558-3565, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35717579

RESUMEN

Although multiple common susceptibility loci for lung cancer (LC) have been identified by genome-wide association studies, they can explain only a small portion of heritability. The etiological contribution of rare deleterious variants (RDVs) to LC risk is not fully characterized and may account for part of the missing heritability. Here, we sequenced the whole exomes of 2777 participants from the Environment and Genetics in Lung cancer Etiology study, a homogenous population including 1461 LC cases and 1316 controls. In single-variant analyses, we identified a new RDV, rs77187983 [EHBP1, odds ratio (OR) = 3.13, 95% confidence interval (CI) = 1.34-7.30, P = 0.008] and replicated two previously reported RDVs, rs11571833 (BRCA2, OR = 2.18; 95% CI = 1.25-3.81, P = 0.006) and rs752672077 (MPZL2, OR = 3.70, 95% CI = 1.04-13.15, P = 0.044). In gene-based analyses, we confirmed BRCA2 (P = 0.007) and ATM (P = 0.014) associations with LC risk and identified TRIB3 (P = 0.009), involved in maintaining genome stability and DNA repair, as a new candidate susceptibility gene. Furthermore, cases were enriched with RDVs in homologous recombination repair [carrier frequency (CF) = 22.9% versus 19.5%, P = 0.017] and Fanconi anemia (CF = 12.5% versus 10.2%, P = 0.036) pathways. Our results were not significant after multiple testing corrections but were enriched in cases versus controls from large scale public biobank resources, including The Cancer Genome Atlas, FinnGen and UK Biobank. Our study identifies novel candidate genes and highlights the importance of RDVs in DNA repair-related genes for LC susceptibility. These findings improve our understanding of LC heritability and may contribute to the development of risk stratification and prevention strategies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares , Reparación del ADN/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Células Germinativas , Humanos , Neoplasias Pulmonares/genética
4.
Hum Mol Genet ; 31(17): 2845-2856, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35357426

RESUMEN

A number of genomic regions have been associated with melanoma risk through genome-wide association studies; however, the causal variants underlying the majority of these associations remain unknown. Here, we sequenced either the full locus or the functional regions including exons of 19 melanoma-associated loci in 1959 British melanoma cases and 737 controls. Variant filtering followed by Fisher's exact test analyses identified 66 variants associated with melanoma risk. Sequential conditional logistic regression identified the distinct haplotypes on which variants reside, and massively parallel reporter assays provided biological insights into how these variants influence gene function. We performed further analyses to link variants to melanoma risk phenotypes and assessed their association with melanoma-specific survival. Our analyses replicate previously known associations in the melanocortin 1 receptor (MC1R) and tyrosinase (TYR) loci, while identifying novel potentially causal variants at the MTAP/CDKN2A and CASP8 loci. These results improve our understanding of the architecture of melanoma risk and outcome.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Melanoma/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Receptor de Melanocortina Tipo 1/genética , Neoplasias Cutáneas/genética
5.
Am J Hum Genet ; 108(9): 1631-1646, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34293285

RESUMEN

Although expression quantitative trait loci (eQTLs) have been powerful in identifying susceptibility genes from genome-wide association study (GWAS) findings, most trait-associated loci are not explained by eQTLs alone. Alternative QTLs, including DNA methylation QTLs (meQTLs), are emerging, but cell-type-specific meQTLs using cells of disease origin have been lacking. Here, we established an meQTL dataset by using primary melanocytes from 106 individuals and identified 1,497,502 significant cis-meQTLs. Multi-QTL colocalization with meQTLs, eQTLs, and mRNA splice-junction QTLs from the same individuals together with imputed methylome-wide and transcriptome-wide association studies identified candidate susceptibility genes at 63% of melanoma GWAS loci. Among the three molecular QTLs, meQTLs were the single largest contributor. To compare melanocyte meQTLs with those from malignant melanomas, we performed meQTL analysis on skin cutaneous melanomas from The Cancer Genome Atlas (n = 444). A substantial proportion of meQTL probes (45.9%) in primary melanocytes is preserved in melanomas, while a smaller fraction of eQTL genes is preserved (12.7%). Integration of melanocyte multi-QTLs and melanoma meQTLs identified candidate susceptibility genes at 72% of melanoma GWAS loci. Beyond GWAS annotation, meQTL-eQTL colocalization in melanocytes suggested that 841 unique genes potentially share a causal variant with a nearby methylation probe in melanocytes. Finally, melanocyte trans-meQTLs identified a hotspot for rs12203592, a cis-eQTL of a transcription factor, IRF4, with 131 candidate target CpGs. Motif enrichment and IRF4 ChIP-seq analysis demonstrated that these target CpGs are enriched in IRF4 binding sites, suggesting an IRF4-mediated regulatory network. Our study highlights the utility of cell-type-specific meQTLs.


Asunto(s)
Redes Reguladoras de Genes , Factores Reguladores del Interferón/genética , Melanocitos/metabolismo , Melanoma/genética , Sitios de Carácter Cuantitativo , Neoplasias Cutáneas/genética , Alelos , Atlas como Asunto , Cromatina/química , Cromatina/metabolismo , Mapeo Cromosómico , Metilación de ADN , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Factores Reguladores del Interferón/metabolismo , Masculino , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Cultivo Primario de Células , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Transcriptoma
6.
Am J Hum Genet ; 108(10): 1852-1865, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559995

RESUMEN

Genome-wide association studies (GWASs) have discovered 20 risk loci in the human genome where germline variants associate with risk of pancreatic ductal adenocarcinoma (PDAC) in populations of European ancestry. Here, we fine-mapped one such locus on chr16q23.1 (rs72802365, p = 2.51 × 10-17, OR = 1.36, 95% CI = 1.31-1.40) and identified colocalization (PP = 0.87) with aberrant exon 5-7 CTRB2 splicing in pancreatic tissues (pGTEx = 1.40 × 10-69, ßGTEx = 1.99; pLTG = 1.02 × 10-30, ßLTG = 1.99). Imputation of a 584 bp structural variant overlapping exon 6 of CTRB2 into the GWAS datasets resulted in a highly significant association with pancreatic cancer risk (p = 2.83 × 10-16, OR = 1.36, 95% CI = 1.31-1.42), indicating that it may underlie this signal. Exon skipping attributable to the deletion (risk) allele introduces a premature stop codon in exon 7 of CTRB2, yielding a truncated chymotrypsinogen B2 protein that lacks chymotrypsin activity, is poorly secreted, and accumulates intracellularly in the endoplasmic reticulum (ER). We propose that intracellular accumulation of a nonfunctional chymotrypsinogen B2 protein leads to ER stress and pancreatic inflammation, which may explain the increased pancreatic cancer risk in carriers of CTRB2 exon 6 deletion alleles.


Asunto(s)
Quimotripsina/genética , Neoplasias Pancreáticas/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Eliminación de Secuencia , Estudios de Casos y Controles , Quimotripsina/antagonistas & inhibidores , Quimotripsina/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo
7.
Am J Hum Genet ; 108(9): 1611-1630, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34343493

RESUMEN

Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma de Células Escamosas/genética , Cromosomas Humanos Par 7 , Sitios Genéticos , Melanocitos/metabolismo , Melanoma/genética , Receptores de Hidrocarburo de Aril/genética , Neoplasias Cutáneas/genética , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/patología , Melanocitos/efectos de la radiación , Melanoma/metabolismo , Melanoma/patología , Dibenzodioxinas Policloradas/toxicidad , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Baño de Sol , Rayos Ultravioleta/efectos adversos
8.
PLoS Genet ; 15(11): e1008490, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31730655

RESUMEN

Despite genetics being accepted as the primary cause of familial aggregation for most diseases, it is still unclear whether afflicted families are likely to share a single highly penetrant rare variant, many minimally penetrant common variants, or a combination of the two types of variants. We therefore use recent estimates of SNP heritability and the liability threshold model to estimate the proportion of afflicted families likely to carry a rare, causal variant. We then show that Polygenic Risk Scores (PRS) may be useful for identifying families likely to carry such a rare variant and therefore for prioritizing families to include in sequencing studies with that aim. Specifically, we introduce a new statistic that estimates the proportion of individuals carrying causal rare variants based on the family structure, disease pattern, and PRS of genotyped individuals. Finally, we consider data from the MelaNostrum consortium and show that, despite an estimated PRS heritability of only 0.05 for melanoma, families carrying putative causal variants had a statistically significantly lower PRS, supporting the idea that PRS prioritization may be a useful future tool. However, it will be important to evaluate whether the presence of rare mendelian variants are generally associated with the proposed test statistic or lower PRS in future and larger studies.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Melanoma/genética , Análisis de Secuencia de ADN , Alelos , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Melanoma/epidemiología , Melanoma/patología , Herencia Multifactorial/genética , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
9.
Am J Epidemiol ; 190(6): 962-976, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33712835

RESUMEN

Epidemiologic studies often rely on questionnaire data, exposure measurement tools, and/or biomarkers to identify risk factors and the underlying carcinogenic processes. An emerging and promising complementary approach to investigate cancer etiology is the study of somatic "mutational signatures" that endogenous and exogenous processes imprint on the cellular genome. These signatures can be identified from a complex web of somatic mutations thanks to advances in DNA sequencing technology and analytical algorithms. This approach is at the core of the Sherlock-Lung study (2018-ongoing), a retrospective case-only study of over 2,000 lung cancers in never-smokers (LCINS), using different patterns of mutations observed within LCINS tumors to trace back possible exposures or endogenous processes. Whole genome and transcriptome sequencing, genome-wide methylation, microbiome, and other analyses are integrated with data from histological and radiological imaging, lifestyle, demographic characteristics, environmental and occupational exposures, and medical records to classify LCINS into subtypes that could reveal distinct risk factors. To date, we have received samples and data from 1,370 LCINS cases from 17 study sites worldwide and whole-genome sequencing has been completed on 1,257 samples. Here, we present the Sherlock-Lung study design and analytical strategy, also illustrating some empirical challenges and the potential for this approach in future epidemiologic studies.


Asunto(s)
Análisis Mutacional de ADN/métodos , Predisposición Genética a la Enfermedad/epidemiología , Neoplasias Pulmonares/genética , Medición de Riesgo/métodos , Secuenciación Completa del Genoma/métodos , Causalidad , Humanos , Estudios Retrospectivos , Factores de Riesgo
10.
Genome Res ; 28(11): 1621-1635, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30333196

RESUMEN

Most expression quantitative trait locus (eQTL) studies to date have been performed in heterogeneous tissues as opposed to specific cell types. To better understand the cell-type-specific regulatory landscape of human melanocytes, which give rise to melanoma but account for <5% of typical human skin biopsies, we performed an eQTL analysis in primary melanocyte cultures from 106 newborn males. We identified 597,335 cis-eQTL SNPs prior to linkage disequilibrium (LD) pruning and 4997 eGenes (FDR < 0.05). Melanocyte eQTLs differed considerably from those identified in the 44 GTEx tissue types, including skin. Over a third of melanocyte eGenes, including key genes in melanin synthesis pathways, were unique to melanocytes compared to those of GTEx skin tissues or TCGA melanomas. The melanocyte data set also identified trans-eQTLs, including those connecting a pigmentation-associated functional SNP with four genes, likely through cis-regulation of IRF4 Melanocyte eQTLs are enriched in cis-regulatory signatures found in melanocytes as well as in melanoma-associated variants identified through genome-wide association studies. Melanocyte eQTLs also colocalized with melanoma GWAS variants in five known loci. Finally, a transcriptome-wide association study using melanocyte eQTLs uncovered four novel susceptibility loci, where imputed expression levels of five genes (ZFP90, HEBP1, MSC, CBWD1, and RP11-383H13.1) were associated with melanoma at genome-wide significant P-values. Our data highlight the utility of lineage-specific eQTL resources for annotating GWAS findings, and present a robust database for genomic research of melanoma risk and melanocyte biology.


Asunto(s)
Predisposición Genética a la Enfermedad , Melanocitos/metabolismo , Melanoma/genética , Sitios de Carácter Cuantitativo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Portadoras/genética , Células Cultivadas , Proteínas de Unión al Hemo , Hemoproteínas/genética , Humanos , Factores Reguladores del Interferón/genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Proteínas Represoras
11.
Hum Mol Genet ; 27(23): 4145-4156, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060076

RESUMEN

Melanoma heritability is among the highest for cancer and single nucleotide polymorphisms (SNPs) contribute to it. To date, only SNPs that reached statistical significance in genome-wide association studies or few candidate SNPs have been included in melanoma risk prediction models. We compared four approaches for building polygenic risk scores (PRS) using 12 874 melanoma cases and 23 203 controls from Melanoma Meta-Analysis Consortium as a training set, and newly genotyped 3102 cases and 2301 controls from the MelaNostrum consortium for validation. We estimated adjusted odds ratios (ORs) for melanoma risk using traditional melanoma risk factors and the PRS with the largest area under the receiver operator characteristics curve (AUC). We estimated absolute risks combining the PRS and other risk factors, with age- and sex-specific melanoma incidence and competing mortality rates from Italy as an example. The best PRS, including 204 SNPs (AUC = 64.4%; 95% confidence interval (CI) = 63-65.8%), developed using winner's curse estimate corrections, had a per-quintile OR = 1.35 (95% CI = 1.30-1.41), corresponding to a 3.33-fold increase comparing the 5th to the 1st PRS quintile. The AUC improvement by adding the PRS was up to 7%, depending on adjusted factors and country. The 20-year absolute risk estimates based on the PRS, nevus count and pigmentation characteristics for a 60-year-old Italian man ranged from 0.5 to 11.8% (relative risk  = 26.34), indicating good separation.


Asunto(s)
Predisposición Genética a la Enfermedad , Melanoma/genética , Nevo/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Italia , Masculino , Melanoma/epidemiología , Melanoma/patología , Persona de Mediana Edad , Herencia Multifactorial/genética , Nevo/epidemiología , Nevo/patología , Polimorfismo de Nucleótido Simple , Medición de Riesgo , Factores de Riesgo , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
12.
Breast Cancer Res ; 21(1): 147, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856876

RESUMEN

BACKGROUND: Heterogeneity of immune gene expression patterns of luminal breast cancer (BC), which is clinically heterogeneous and overall considered as low immunogenic, has not been well studied especially in non-European populations. Here, we aimed at characterizing the immune gene expression profile of luminal BC in an Asian population and associating it with patient characteristics and tumor genomic features. METHODS: We performed immune gene expression profiling of tumor and adjacent normal tissue in 92 luminal BC patients from Hong Kong using RNA-sequencing data and used unsupervised consensus clustering to stratify tumors. We then used luminal patients from The Cancer Genome Atlas (TCGA, N = 564) and a Korean breast cancer study (KBC, N = 112) as replication datasets. RESULTS: Based on the expression of 130 immune-related genes, luminal tumors were stratified into three distinct immune subtypes. Tumors in one subtype showed higher level of tumor-infiltrating lymphocytes (TILs), characterized by T cell gene activation, higher expression of immune checkpoint genes, higher nonsynonymous mutation burden, and higher APOBEC-signature mutations, compared with other luminal tumors. The high-TIL subtype was also associated with lower ESR1/ESR2 expression ratio and increasing body mass index. The comparison of the immune profile in tumor and matched normal tissue suggested a tumor-derived activation of specific immune responses, which was only seen in high-TIL patients. Tumors in a second subtype were characterized by increased expression of interferon-stimulated genes and enrichment for TP53 somatic mutations. The presence of three immune subtypes within luminal BC was replicated in TCGA and KBC, although the pattern was more similar in Asian populations. The germline APOBEC3B deletion polymorphism, which is prevalent in East Asian populations and was previously linked to immune activation, was not associated with immune subtypes in our study. This result does not support the hypothesis that the germline APOBEC3B deletion polymorphism is the driving force for immune activation in breast tumors in Asian populations. CONCLUSION: Our findings suggest that immune gene expression and associated genomic features could be useful to further stratify luminal BC beyond the current luminal A/B classification and a subset of luminal BC patients may benefit from checkpoint immunotherapy, at least in Asian populations.


Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica , Inmunidad/genética , Transcriptoma , Biomarcadores de Tumor , Biología Computacional/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Mutación , Reproducibilidad de los Resultados , Microambiente Tumoral
13.
Hum Mol Genet ; 26(15): 3014-3027, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854564

RESUMEN

Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P < 1.0 × 10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P = 1.13 × 10-62) and CYP1B1 (P < 2.49 × 10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis.


Asunto(s)
Islas de CpG/genética , Neoplasias Pulmonares/genética , Fumar/efectos adversos , Células A549/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/sangre , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Metilación de ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Epigenómica/métodos , Estudio de Asociación del Genoma Completo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Fumar/genética , Nicotiana
14.
BMC Genet ; 20(1): 59, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315583

RESUMEN

BACKGROUND: Association studies in recently admixed populations are extremely useful to identify the genetic architecture of pigmentation, due to their high genotypic and phenotypic variation. However, to date only four Genome-Wide Association Studies (GWAS) have been carried out in these populations. RESULTS: We present a GWAS of skin pigmentation in an admixed sample from Cuba (N = 762). Additionally, we conducted a meta-analysis including the Cuban sample, and admixed samples from Cape Verde, Puerto Rico and African-Americans from San Francisco. This meta-analysis is one of the largest efforts so far to characterize the genetic basis of skin pigmentation in admixed populations (N = 2,104). We identified five genome-wide significant regions in the meta-analysis, and explored if the markers observed in these regions are associated with the expression of relevant pigmentary genes in human melanocyte cultures. In three of the regions identified in the meta-analysis (SLC24A5, SLC45A2, and GRM5/TYR), the association seems to be driven by non-synonymous variants (rs1426654, rs16891982, and rs1042602, respectively). The rs16891982 polymorphism is strongly associated with the expression of the SLC45A2 gene. In the GRM5/TYR region, in addition to the rs1042602 non-synonymous SNP located on the TYR gene, variants located in the nearby GRM5 gene have an independent effect on pigmentation, possibly through regulation of gene expression of the TYR gene. We also replicated an association recently described near the MFSD12 gene on chromosome 19 (lead variant rs112332856). Additionally, our analyses support the presence of multiple signals in the OCA2/HERC2/APBA2 region on chromosome 15. A clear causal candidate is the HERC2 intronic variant rs12913832, which has a profound influence on OCA2 expression. This variant has pleiotropic effects on eye, hair, and skin pigmentation. However, conditional and haplotype-based analyses indicate the presence of other variants with independent effects on melanin levels in OCA2 and APBA2. Finally, a follow-up of genome-wide signals identified in a recent GWAS for tanning response indicates that there is a substantial overlap in the genetic factors influencing skin pigmentation and tanning response. CONCLUSIONS: Our meta-analysis of skin pigmentation GWAS in recently admixed populations provides new insights about the genetic architecture of this complex trait.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo , Pigmentación de la Piel/genética , Alelos , Genotipo , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
16.
Gut ; 67(3): 521-533, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28634199

RESUMEN

OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p≤0.0001), indicating tissue-specific functional relevance. A common pancreatic cancer risk locus on 9q34.2 (rs687289) was associated with ABO expression in histologically normal (p=5.8×10-8) and tumour-derived (p=8.3×10-5) tissues. The high linkage disequilibrium between this variant and the O blood group generating deletion variant in ABO (exon 6) suggested that nonsense-mediated decay (NMD) of the 'O' mRNA might explain this finding. However, knockdown of crucial NMD regulators did not influence decay of the ABO 'O' mRNA, indicating that a gene regulatory element influenced by pancreatic cancer risk alleles may underlie the eQTL. CONCLUSIONS: We have identified cis-eQTLs representing potential functional regulatory variants in the pancreas and generated a rich data set for further studies on gene expression and its regulation in pancreatic tissues.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Expresión Génica , Páncreas , Neoplasias Pancreáticas/genética , Sitios de Carácter Cuantitativo , ARN Neoplásico/análisis , Transcriptoma , Alelos , Cromosomas Humanos Par 9 , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN
17.
Proteomics ; 16(3): 417-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26553150

RESUMEN

Aberrant telomerase reactivation in differentiated cells represents a major event in oncogenic transformation. Recurrent somatic mutations in the human telomerase reverse transcriptase (TERT) promoter region, predominantly localized to two nucleotide positions, are highly prevalent in many cancer types. Both mutations create novel consensus E26 transformation-specific (ETS) motifs and are associated with increased TERT expression. Here, we perform an unbiased proteome-wide survey of transcription factor binding at TERT promoter mutations in melanoma. We observe ELF1 binding at both mutations in vitro and we show that increased recruitment of GABP is enabled by the spatial architecture of native and novel ETS motifs in the TERT promoter region. We characterize the dynamics of competitive binding between ELF1 and GABP and provide evidence for ELF1 exclusion by transcriptionally active GABP. This study thus provides an important description of proteome-wide, mutation-specific binding at the recurrent, oncogenic TERT promoter mutations.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Factor de Transcripción de la Proteína de Unión a GA/genética , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Motivos de Nucleótidos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteómica/métodos , Transducción de Señal , Telomerasa/genética , Factores de Transcripción/genética
18.
BMC Genomics ; 16(1): 732, 2015 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-26409826

RESUMEN

BACKGROUND: Genomic instability plays an important role in human cancers. We previously characterized genomic instability in esophageal squamous cell carcinomas (ESCC) in terms of loss of heterozygosity (LOH) and copy number (CN) changes in tumors. In the current study we focus on biallelic loss and its relation to expression of mRNA and miRNA in ESCC using results from 500 K SNP, mRNA, and miRNA arrays in 30 cases from a high-risk region of China. RESULTS: (i) Biallelic loss was uncommon but when it occurred it exhibited a consistent pattern: only 77 genes (<0.5%) showed biallelic loss in at least 10% of ESCC samples, but nearly all of these genes were concentrated on just four chromosomal arms (i.e., 42 genes on 3p, 14 genes on 9p, 10 genes on 5q, and seven genes on 4p). (ii) Biallelic loss was associated with lower mRNA expression: 52 of the 77 genes also had RNA expression data, and 41 (79%) showed lower expression levels in cases with biallelic loss compared to those without. (iii) The relation of biallelic loss to miRNA expression was less clear but appeared to favor higher miRNA levels: of 60 miRNA-target gene pairs, 34 pairs (57%) had higher miRNA expression with biallelic loss than without, while 26 pairs (43%) had lower miRNA expression. (iv) Finally, the effect of biallelic loss on the relation between miRNA and mRNA expression was complex. Biallelic loss was most commonly associated with a pattern of elevated miRNA and reduced mRNA (43%), but a pattern of both reduced miRNA and mRNA was also common (35%). CONCLUSION: Our results indicate that biallelic loss in ESCC is uncommon, but when it occurs it is localized to a few specific chromosome regions and is associated with reduced mRNA expression of affected genes. The effect of biallelic loss on miRNA expression and on the relation between miRNA and mRNA expressions was complex.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Estudios de Asociación Genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Adulto , Anciano , Alelos , China , Cromosomas Humanos , Carcinoma de Células Escamosas de Esófago , Femenino , Inestabilidad Genómica , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Transcriptoma
19.
Pigment Cell Melanoma Res ; 37(2): 291-308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972124

RESUMEN

The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.


Asunto(s)
Melanoma , Ratones , Animales , Humanos , Melanoma/metabolismo , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 1/metabolismo , Melanocitos/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica , Color del Cabello
20.
ArXiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38327678

RESUMEN

In our previous work, we demonstrated that it is feasible to perform analysis on mutation signature data without the need for downloads or installations and analyze individual patient data at scale without compromising privacy. Building on this foundation, we developed an in-browser Software Development Kit (a JavaScript SDK), mSigSDK, to facilitate the orchestration of distributed data processing workflows and graphic visualization of mutational signature analysis results. We strictly adhered to modern web computing standards, particularly the modularization standards set by the ECMAScript ES6 framework (JavaScript modules). Our approach allows for the computation to be entirely performed by secure delegation to the computational resources of the user's own machine (in-browser), without any downloads or installations. The mSigSDK was developed primarily as a companion library to the mSig Portal resource of the National Cancer Institute Division of Cancer Epidemiology and Genetics (NIH/NCI/DCEG), with a focus on FAIR extensibility as components of other researchers' own data science constructs. Anticipated extensions include the programmatic operation of other mutation signature API ecosystems such as SIGNAL and COSMIC, advancing towards a data commons for mutational signature research (Grossman et al., 2016).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA