Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 35(1): 3, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206387

RESUMEN

The purpose of this study is to explore a storage solution for titanium implants and investigate its osteogenic properties. The commercial pure titanium (cp-Ti) surface and double-etched (SLA) titanium surface specimens were preserved in air, saline, 10 mM Vitamin C (VitC)-containing saline and 100 mM VitC-containing saline storage solutions for 2 weeks. The surface microtopography of titanium was observed by scanning electron microscopy (SEM), the surface elemental compositions of the specimens were analyzed by Raman and X-ray photoelectron spectroscopy (XPS), and water contact angle and surface roughness of the specimens were tested. The protein adsorption capacity of two titanium surfaces after storage in different media was examined by BCA kit. The MC3T3-E1 osteoblasts were cultured on two titanium surfaces after storage in different media, and the proliferation, adhesion and osteogenic differentiation activity of osteoblasts were detected by CCK-8, laser confocal microscope (CLSM) and Western blot. The SEM results indicated that the titanium surfaces of the air group were relatively clean while scattered sodium chloride or VitC crystals were seen on the titanium surfaces of the other three groups. There were no significant differences in the micromorphology of the titanium surfaces among the four groups. Raman spectroscopy detected VitC crystals on the titanium surfaces of two experimental groups. The XPS, water contact angle and surface roughness results suggested that cp-Ti and SLA-Ti stored in 0.9% NaCl and two VitC-containing saline storage solutions possessed less carbon contamination and higher surface hydrophilicity. Moreover, the protein adsorption potentials of cp-Ti and SLA-Ti surfaces were significantly improved under preservation in two VitC-containing saline storage solutions. The results of in vitro study showed that the preservation of two titanium surfaces in 100 mM VitC-containing saline storage solution upregulated the cell adhesion, proliferation, osteogenic related protein expressions of MC3T3-E1 osteoblasts. In conclusion, preservation of cp-Ti and SLA-Ti in 100 mM VitC-containing saline storage solution could effectively reduce carbon contamination and enhance surface hydrophilicity, which was conducive to osteogenic differentiation of osteoblasts.


Asunto(s)
Ácido Ascórbico , Solución Salina , Titanio , Osteogénesis , Carbono , Agua
2.
J Mater Sci Mater Med ; 33(6): 44, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575837

RESUMEN

This study investigated the corrosion susceptibility of pure titanium under uric acid exposure for 7 days based on surface analysis. The prepared pure titanium specimens, exposed to different concentrations of uric acid, were examined for surface microstructure, surface element composition and surface wettability using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and static contact angle measurement, respectively. The corrosion behaviors of titanium specimens were measured by open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The titanium ion release from the prepared specimens, which were immersed in Hank's balanced salt solution (HBSS) containing different amount of uric acid, was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). More irregular pitting holes were observed on titanium surfaces exposed to a high concentration of uric acid, and XPS analyses revealed that the amount of titanium dioxide (TiO2) decreased. Titanium surfaces pre-treated with high uric acid became more hydrophobic. Furthermore, the results of OCP and potentiodynamic polarization tests showed increased corrosion susceptibility of titanium samples, while EIS data indicated more active corrosion behavior of titanium materials. The high concentration of uric acid also induced titanium ion release. High concentration of uric acid negatively influenced the surface characteristics and corrosion properties of titanium materials, which destroyed the titanium oxide film barrier. High uric acid exposure increased corrosion susceptibility of pure titanium specimens and accelerated titanium ion release. Graphical abstract.


Asunto(s)
Titanio , Ácido Úrico , Corrosión , Ensayo de Materiales , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Titanio/química
3.
World J Clin Cases ; 10(24): 8535-8546, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36157824

RESUMEN

BACKGROUND: Post-transarterial chemoembolization (TACE) liver failure occurs frequently in hepatocellular carcinoma (HCC) patients. The identification of predictors for post-TACE liver failure is of great importance for clinical decision-making in this population. AIM: To investigate the occurrence rate and predictive factors of post-TACE liver failure in this retrospective study to provide clues for decision-making regarding TACE procedures in HCC patients. METHODS: The clinical records of HCC patients treated with TACE therapy were reviewed. Baseline clinical characteristics and laboratory parameters of these patients were extracted. Logistic models were used to identify candidates to predict post-TACE liver failure. RESULTS: A total of 199 HCC patients were enrolled in this study, and 70 patients (35.2%) developed post-TACE liver failure. Univariate and multivariate logistic models indicated that microspheres plus gelatin embolization and main tumor size > 5 cm were risk predictors for post-TACE liver failure [odds ratio (OR): 4.4, 95% confidence interval (CI): 1.2-16.3, P = 0.027; OR: 2.3, 95%CI: 1.05-5.3, P = 0.039, respectively]. Conversely, HCC patients who underwent tumor resection surgery before the TACE procedure had a lower risk for post-TACE liver failure (OR: 0.4, 95%CI: 0.2-0.95, P = 0.039). CONCLUSION: Microspheres plus gelatin embolization and main tumor size might be risk factors for post-TACE liver failure in HCC patients, while prior tumor resection could be a favorable factor reducing the risk of post-TACE liver failure.

4.
Biomed Mater ; 17(1)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34731839

RESUMEN

In this study, we established a procedure to prepare a Semaphorin4D (SEMA4D)-immobilized titanium surface and explored its effects on macrophage behaviors in an endothelial cell/macrophage indirect coculture model. The SEMA4D-bovine serum albumin complex was immobilized onto a preprocessed poly L-lysine titanium surface through NaOH hydrothermal treatment and self-assembly technology. All titanium specimens were examined for surface microstructure, surface element composition, and surface wettability by field emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and water contact angle measurement, respectively. Subsequently, we constructed an endothelial cell/macrophage indirect coculture model and evaluated the activation of NF-κB signaling pathway and the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1ß) in macrophages. In XPS analysis, the SEMA4D-immobilized titanium surface appeared as a loose porous structure covered with uniform film, which exhibited better hydrophilicity than the control smooth titanium surface. In the indirect coculture model, SEMA4D attenuated the activation of NF-κB signaling pathway of lipopolysaccharide-stimulated THP-1 macrophages, thereby downregulating the expression of proinflammatory cytokines in macrophages. In conclusion, SEMA4D could be immobilized on titanium surfaces through NaOH hydrothermal treatment and self-assembly technology. Meanwhile, SEMA4D immobilization altered the characteristics of the titanium surfaces, which negatively regulated macrophage behaviors in the endothelial cell/macrophage indirect coculture model.


Asunto(s)
Macrófagos , Titanio , Antiinflamatorios/farmacología , Antígenos CD , Técnicas de Cocultivo , Células Endoteliales , Macrófagos/metabolismo , Semaforinas , Propiedades de Superficie , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA