Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 80(6): 1013-1024.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33338401

RESUMEN

Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/genética , Anemia de Fanconi/genética , Formaldehído/toxicidad , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Anemia de Fanconi/sangre , Anemia de Fanconi/patología , Formaldehído/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Inestabilidad Genómica/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células K562 , Transcripción Genética
2.
Nature ; 593(7860): 586-590, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981038

RESUMEN

Ferroptosis, a form of regulated cell death that is induced by excessive lipid peroxidation, is a key tumour suppression mechanism1-4. Glutathione peroxidase 4 (GPX4)5,6 and ferroptosis suppressor protein 1 (FSP1)7,8 constitute two major ferroptosis defence systems. Here we show that treatment of cancer cells with GPX4 inhibitors results in acute depletion of N-carbamoyl-L-aspartate, a pyrimidine biosynthesis intermediate, with concomitant accumulation of uridine. Supplementation with dihydroorotate or orotate-the substrate and product of dihydroorotate dehydrogenase (DHODH)-attenuates or potentiates ferroptosis induced by inhibition of GPX4, respectively, and these effects are particularly pronounced in cancer cells with low expression of GPX4 (GPX4low). Inactivation of DHODH induces extensive mitochondrial lipid peroxidation and ferroptosis in GPX4low cancer cells, and synergizes with ferroptosis inducers to induce these effects in GPX4high cancer cells. Mechanistically, DHODH operates in parallel to mitochondrial GPX4 (but independently of cytosolic GPX4 or FSP1) to inhibit ferroptosis in the mitochondrial inner membrane by reducing ubiquinone to ubiquinol (a radical-trapping antioxidant with anti-ferroptosis activity). The DHODH inhibitor brequinar selectively suppresses GPX4low tumour growth by inducing ferroptosis, whereas combined treatment with brequinar and sulfasalazine, an FDA-approved drug with ferroptosis-inducing activity, synergistically induces ferroptosis and suppresses GPX4high tumour growth. Our results identify a DHODH-mediated ferroptosis defence mechanism in mitochondria and suggest a therapeutic strategy of targeting ferroptosis in cancer treatment.


Asunto(s)
Dihidroorotato Deshidrogenasa/metabolismo , Ferroptosis , Mitocondrias/metabolismo , Neoplasias/enzimología , Animales , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Dihidroorotato Deshidrogenasa/genética , Femenino , Eliminación de Gen , Humanos , Peroxidación de Lípido , Metabolómica , Ratones Desnudos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Opt Lett ; 49(6): 1508-1511, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489437

RESUMEN

Spontaneous infrared radiation dissipation is a critical factor in facilitating object cooling, which influences the thermal stability and stealth efficacy of infrared stealth devices. Furthermore, the compatibility between efficient visible, infrared, and radar stealth is challenging due to different camouflage principles in different bands. This Letter presents a five-layer etched film structure to achieve multispectral stealth, and the utilization of the high-quality ultrathin silver films enables highly efficient infrared selective emission. This etched film structure with few layers demonstrates potential applications in diverse domains, including multi-band anti-detection and multispectral manipulation.

4.
Apoptosis ; 28(9-10): 1304-1314, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37523039

RESUMEN

Amino acids (AAs) are crucial molecules for the synthesis of mammalian proteins as well as a source of energy and redox equilibrium maintenance. The development of tumors also requires AAs as nutrients. Increased AAs metabolism is frequently seen in tumor cells to produce enough biomass, energy, and reduction agents. However, increased AA demand may result in auxotrophy in some cancer cells, highlighting the vulnerabilities of cancers and exposing the AA metabolism as a potential target for cancer therapy. The dynamic balance of cell survival and death is required for cellular homeostasis, growth, and development. Malignant cells manage to avoid cell death through a range of mechanisms, such as developing an addiction to amino acids through metabolic adaptation. In order to offer some guidance for AA-targeted cancer therapy, we have outlined the function of AA metabolism in tumor progression, the modalities of cell death, and the regulation of AA metabolism on tumor cell death in this review.


Asunto(s)
Aminoácidos , Apoptosis , Animales , Aminoácidos/metabolismo , Proteínas , Homeostasis , Muerte Celular , Mamíferos/metabolismo
5.
Mol Med ; 29(1): 132, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770820

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD involves multiple biological changes, including insulin resistance, oxidative stress, inflammation, as well as genetic and environmental factors. Liraglutide has been used to control blood sugar. But the impact of liraglutide on T2DM-associated NAFLD remains unclear. In this study, we investigated the impact and potential molecular mechanisms of inhibiting ferroptosis for liraglutide improves T2DM-associated NAFLD. METHODS: Mice were fed on high-fat-diet and injected with streptozotocin to mimic T2DM-associated NAFLD and gene expression in liver was analysed by RNA-seq. The fast blood glucose was measured during the period of liraglutide and ferrostatin-1 administration. Hematoxylin and eosin staining was used to evaluate the pathological changes in the liver. The occurrence of hepatic ferroptosis was measured by lipid peroxidation in vivo. The mechanism of liraglutide inhibition ferroptosis was investigated by in vitro cell culture. RESULTS: Liraglutide not only improved glucose metabolism, but also ameliorated tissue damage in the livers. Transcriptomic analysis indicated that liraglutide regulates lipid metabolism related signaling including AMPK and ACC. Furthermore, ferroptosis inhibitor rather than other cell death inhibitors rescued liver cell viability in the presence of high glucose. Mechanistically, liraglutide-induced activation of AMPK phosphorylated ACC, while AMPK inhibitor compound C blocked the liraglutide-mediated suppression of ferroptosis. Moreover, ferroptosis inhibitor restored liver function in T2DM mice in vivo. CONCLUSIONS: These findings indicate that liraglutide ameliorates the T2DM-associated NAFLD, which possibly through the activation of AMPK/ACC pathway and inhibition of ferroptosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ferroptosis , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Liraglutida/farmacología , Liraglutida/uso terapéutico , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
6.
Neural Comput ; 35(9): 1593-1608, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37437192

RESUMEN

Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bioplausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have advantages and limitations. ANN-to-SNN conversion requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this letter, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN(T = 1) by approximating the neural potential distribution with random noise, then convert the single-step SNN(T = 1) to a multistep SNN(T = N) losslessly. The introduction of gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65% to 75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bioplausible.

7.
Ecotoxicol Environ Saf ; 259: 115060, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37229876

RESUMEN

Bisphenol A (BPA) has a number of adverse effects on the reproductive development of females. In particular, the mechanism of disruption of ovarian development in adolescent mice is still unclear. Based on transcriptome sequencing results, a differentially expressed lncRNA, Fhad1os2, was detected in the ovaries of BPA-exposed pubertal mice. In our study, the lncRNA Fhad1os2, localized in the ovarian granulosa cell cytoplasm, could regulate the proliferation of mouse ovarian granulosa cells. Mechanistically, the results of RNA pull-down experiments as well as mass spectrometry analysis showed that ERα, an interfering signaling molecule of BPA, could directly bind lncRNA Fhad1os2 and decrease the transcription of lncRNA Fhad1os2 in response to the estrogen-like effect of BPA. BPA exposure also caused abnormal lncRNA Fhad1os2 pulldown protein-related signaling pathways in the ovaries of adolescent mice. Furthermore, lncRNA Fhad1os2 interacted with RUNX3, a transcription factor related to follicle development and hormone synthesis. As a negative regulator, lncRNA Fhad1os2 transactivated the expression of Runx3, which in turn induced RUNX3 to positively regulate aromatase (Cyp19a1) expression in mouse ovarian granulosa cells and promote estrogen synthesis. In conclusion, our study indicates that BPA exposure interferes with ERα-regulated lncRNA Fhad1os2 interactions with RUNX3 in pubertal mice, affecting estrogen synthesis in mouse granulosa cells and contributing to premature ovarian maturation in pubertal mice.


Asunto(s)
Ovario , ARN Largo no Codificante , Femenino , Ratones , Animales , Receptor alfa de Estrógeno/metabolismo , ARN Largo no Codificante/metabolismo , Células de la Granulosa , Compuestos de Bencidrilo/metabolismo , Estrógenos/metabolismo
8.
Small ; 18(14): e2107656, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150039

RESUMEN

Even though radiotherapy is the most important therapeutic strategy for colon cancer treatment, there is an enormous demand to improve radiosensitivity in solid tumor destruction. For this purpose, a biomimetic nanoplatform based on hollow polydopamine nanoparticles (HP) with homologous targeting and pH-responsive drug release properties is designed. In this work, HP is constructed by using a chelation competition-induced polymerization strategy and then modified with the cancer cell membrane. Hollow polydopamine integrated with Pt nanoparticles (Pt@HP) has a catalase-like activity, which can be used to trigger endogenous H2 O2 into O2 , relieving hypoxia of the tumor microenvironment (TME). With mesoporous shells and large cavities, Pt@HP shows efficient apoptin100-109 (AP) and verteporfin (VP) loading to form AVPt@HP@M. Under X-ray irradiation, AVPt@HP@M exerts a radiosensitization effect via multiple strategies, including relieving hypoxia (Pt NPs), enhancing tumor apoptosis (AP), and X-ray-induced photodynamic therapy (X-PDT) (VP). Further metabonomics analysis shows that the specific mechanism of the AVPt@HP@M is through influencing purine metabolism. Without appreciable systemic toxicity, this nanoplatform highlights a new strategy for effective radiosensitization and provides a reference for treating malignant tumors.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Fotoquimioterapia , Biomimética , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/radioterapia , Humanos , Hipoxia , Indoles , Nanopartículas/uso terapéutico , Polímeros , Microambiente Tumoral
10.
Opt Express ; 29(22): 36430-36441, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34809053

RESUMEN

The past few years have witnessed the great success of artificial metamaterials with effective medium parameters to control electromagnetic waves. Herein, we present a scheme to achieve broadband microwave low specular reflection with uniform backward scattering by using a coding metasurface, which is composed of a rational layout of subwavelength coding elements, via an optimization method. We propose coding elements with high transparency based on ultrathin doped silver, which are capable of generating large phase differences (∼180°) over a wide frequency range by designing geometric structures. The electromagnetic diffusion of the coding metasurface originates from the destructive interference of the reflected waves in various directions. Numerical simulations and experimental results demonstrate that low reflection is achieved from 12 to 18 GHz with a high angular insensitivity of up to ±40° for both transverse electric and transverse magnetic polarizations. Furthermore, the excellent visible transparency of the encoding metasurface is promising for various microwave and optical applications such as electronic surveillance, electromagnetic interference shielding, and radar cross-section reduction.

11.
Perception ; 50(12): 1002-1026, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34851793

RESUMEN

Polygon tilings in natural and man-made objects show great variety. Unlike previous studies that have mainly focused on their classification and production methods, this study aimed at exploring factors that may contribute to the perceived beauty of convex polygon tilings. We analyze the dimensions of regularity, curvature, and density, as well as individual differences. Triangle tilings and hexagon tilings were tested in Experiment 1 and 2, respectively. The results showed that the perceived beauty of convex polygon tilings can be enhanced by higher levels of regularity and nonobvious local curvature. Surprisingly, the effect of density appeared to be different, with the dense triangle tilings and the less dense hexagon tilings scoring higher than the reverse. We discuss a possible explanation based on trypophobia caused by different types of polygons, as well as the observers' personality trait of agreeableness.


Asunto(s)
Belleza , Humanos , Trastornos Fóbicos
12.
Proc Natl Acad Sci U S A ; 114(12): 3192-3197, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28275095

RESUMEN

The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.


Asunto(s)
Estrés del Retículo Endoplásmico , Redes Reguladoras de Genes , Estrés Fisiológico , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Factor de Transcripción Activador 3/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Metabolismo Energético , Regulación de la Expresión Génica , Glucosa/metabolismo , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Transcripción CHOP/genética , Proteínas Supresoras de Tumor/genética , Tunicamicina/farmacología , Ubiquitina Tiolesterasa/genética , Respuesta de Proteína Desplegada
13.
Opt Lett ; 44(5): 1253-1256, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821761

RESUMEN

In this work, we proposed an optically transparent double-layer frequency-selective surface (FSS) based on interlaced multiring metallic mesh. By changing the large metal area of a conventional double-layer FSS into triangular-orthogonal distributed basic rings and nested rotated subrings, we achieved an FSS with high optical transmittance and low normalized high-order diffraction intensity while maintaining a flat passband and steep transition band. The results showed that our fabricated FSS had a normalized visible transmittance of 90.31%, stable filtering passband of ∼33.9 GHz, 3 dB bandwidth of 13.4 GHz, and uniform diffraction distribution, which are favorable characteristics for optically transparent FSS applications.

14.
Biotechnol Bioeng ; 116(1): 54-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30320445

RESUMEN

Understanding the dynamics of biofilm development in response to chemical cues and signals is required toward the development of controllable biofilm-mediated bioprocesses. In this study, we report a new biofilm growth system that integrates a microfluidic gradient mixer with a biofilm growth chamber. The biofilm growth system allows biofilms to grow under defined solute gradients and enables nondestructive monitoring of the biofilm development dynamics in response to the defined gradients. The solute gradients generated in the system were simulated and then validated experimentally. We then demonstrated the applicability of the biofilm growth system in studying biofilm development under defined solute gradients. Specifically, we examined biofilm development of Shewanella oneidensis and Comamonas testosteroni under a defined calcium and nitrate gradient, respectively. Using two C. testosteroni strains (WDL7 and I2), we further demonstrated the applicability of our biofilm growth system to study the development of coculture biofilms under a defined solute gradient. Our results show that the biofilm growth system we have developed here can be a promising tool to reveal the dynamics of biofilm development in response to chemical cues and signals as well as the interorganism interactions in coculture biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Comamonas testosteroni/efectos de los fármacos , Medios de Cultivo/química , Dispositivos Laboratorio en un Chip , Microfluídica/instrumentación , Microfluídica/métodos , Shewanella/efectos de los fármacos , Calcio/metabolismo , Comamonas testosteroni/crecimiento & desarrollo , Nitratos/metabolismo , Shewanella/crecimiento & desarrollo
15.
Environ Sci Technol ; 53(12): 7095-7102, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31124657

RESUMEN

Bisphenol A (BPA) is an important endocrine disrupting chemical. Although high levels of BPA in some new clothes have been reported, the occurrence of bisphenol chemicals including BPA in daily clothes is still unknown, and the human exposure to BPA in clothes has not been well assessed. In this study, used/washed clothes were collected from residents' wardrobes and the concentrations of BPA and its analogues were detected. BPA was present in all the used clothes at concentrations ranging from <3.30 to 471 ng/g (median: 34.2 ng/g; mean ± SD: 57.5 ± 93.6 ng/g), while bisphenol S was also detected in 29% of the samples. Although higher average concentration (88.4 ± 289 ng/g) and maximum concentration (1823 ng/g) of BPA were found in the new clothes, the median concentration of BPA in the used clothes (34.2 ng/g) was even higher than that in the new clothes (17.7 ng/g). Cross contamination of BPA during laundering was identified by a simulated laundry experiment, which explained the homogenizing tendency of bisphenol contaminants in the used clothes. An estimated dermal exposure dose of 52.1 ng/kg BW/d was obtained for BPA exposure in children from the highly polluted sweaty clothes (with BPA concentration of 199 ng/g). This indicates a relatively high exposure risk in humans. Compared to other exposure routes, the contribution of dermal exposure dose of BPA from the daily clothes should not be neglected.


Asunto(s)
Compuestos de Bencidrilo , Lavandería , Niño , Humanos , Fenoles
16.
J Biol Chem ; 292(34): 14240-14249, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28630042

RESUMEN

Cancer cells with specific genetic alterations may be highly dependent on certain nutrients for survival, which can inform therapeutic strategies to target these cancer-specific metabolic vulnerabilities. The glutamate/cystine antiporter solute carrier family 7 member 11 (SLC7A11, also called xCT) is overexpressed in several cancers. Contrasting the established pro-survival roles of SLC7A11 under other stress conditions, here we report the unexpected finding that SLC7A11 overexpression enhances cancer cell dependence on glucose and renders cancer cells more sensitive to glucose starvation-induced cell death and, conversely, that SLC7A11 deficiency by either knockdown or pharmacological inhibition promotes cancer cell survival upon glucose starvation. We further show that glucose starvation induces SLC7A11 expression through ATF4 and NRF2 transcription factors and, correspondingly, that ATF4 or NRF2 deficiency also renders cancer cells more resistant to glucose starvation. Finally, we show that SLC7A11 overexpression decreases whereas SLC7A11 deficiency increases intracellular glutamate levels because of SLC7A11-mediated glutamate export and that supplementation of α-ketoglutarate, a key downstream metabolite of glutamate, fully restores survival in SLC7A11-overexpressing cells under glucose starvation. Together, our results support the notion that both glucose and glutamate have important roles in maintaining cancer cell survival and uncover a previously unappreciated role of SLC7A11 to promote cancer cell dependence on glucose. Our study therefore informs therapeutic strategies to target the metabolic vulnerability in tumors with high SLC7A11 expression.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Ácido Glutámico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Absorción Fisiológica , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos/citología , Glucosa/metabolismo , Células HEK293 , Humanos , Ácidos Cetoglutáricos/metabolismo , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias/enzimología , Neoplasias/patología , Proteínas Recombinantes/metabolismo
17.
J Cell Sci ; 128(12): 2302-13, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25967549

RESUMEN

G-protein-coupled receptors (GPCRs) are key players in cell signaling, and their cell surface expression is tightly regulated. For many GPCRs such as ß2-AR (ß2-adrenergic receptor), receptor activation leads to downregulation of receptor surface expression, a phenomenon that has been extensively characterized. By contrast, some other GPCRs, such as GABA(B) receptor, remain relatively stable at the cell surface even after prolonged agonist treatment; however, the underlying mechanisms are unclear. Here, we identify the small GTPase Rap1 as a key regulator for promoting GABA(B) receptor surface expression. Agonist stimulation of GABA(B) receptor signals through Gαi/o to inhibit Rap1GAPII (also known as Rap1GAP1b, an isoform of Rap1GAP1), thereby activating Rap1 (which has two isoforms, Rap1a and Rap1b) in cultured cerebellar granule neurons (CGNs). The active form of Rap1 is then recruited to GABA(B) receptor through physical interactions in CGNs. This Rap1-dependent signaling cascade promotes GABA(B) receptor surface expression by stimulating receptor recycling. Our results uncover a new mechanism regulating GPCR surface expression and also provide a potential explanation for the slow, long-lasting inhibitory action of GABA neurotransmitter.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Neuronas/metabolismo , Receptores de GABA-B/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Secuencia de Aminoácidos , Animales , Biotinilación , Western Blotting , Células Cultivadas , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Fosforilación , Homología de Secuencia de Aminoácido , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
J Nanosci Nanotechnol ; 17(1): 168-74, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29617098

RESUMEN

Nanomaterial-based photothermal agents have attracted great attention as near-infrared laser driven ablation agents for tumor therapy. In this work, Prussian blue nanocubes with porous interior were synthesized via controlled chemical etching method and successfully applied for efficient photothermal ablation of tumor cells in vitro. Monodispersed porous Prussian blue nanocubes (115.4±4.7 nm) were produced through a controlled self-etching reaction in the presence of polyvinylpyrrolidone (PVP). Owing to the strong absorbance in near infrared (NIR) region, the resulted porous Prussian blue nanocubes could lead to more than 80% death of Hela cells after being treated with nanocubes of concentration as low as 100 µg mL−1. Compared to the traditional solid Prussian blue nanoparticles, these porous nanocubes can provide extra space for encapsulating anti-cancer drugs in their porous interior. It is anticipated that these porous Prussian blue nanocubes can be applied as an enabling platform to develop the next generation of multifunctional drug carrier for cancer treatments.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Ferrocianuros/química , Nanoestructuras/química , Fototerapia/métodos , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/farmacología , Ferrocianuros/farmacología , Células HeLa , Humanos , Tamaño de la Partícula , Porosidad
20.
Sensors (Basel) ; 15(2): 3351-61, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25654716

RESUMEN

Thermal sensors based on thermopiles are some of the most robust and popular temperature sensing technologies across industries and research disciplines. A chip calorimeter with a 3D thermopile layout with a large sensing area and multichannel capacity has been developed, which is highly desired for many applications requiring large reaction chambers or high throughputs, such as biofilm research, drug screening, etc. The performance of the device, including temperature sensitivity and heat power sensitivity, was evaluated. The capability to split the chip calorimeter to multiple channels was also demonstrated, which makes the chip calorimeter very flexible and powerful in many applications.


Asunto(s)
Biopelículas , Calorimetría/instrumentación , Evaluación Preclínica de Medicamentos , Calor , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA