Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Traffic ; 24(3): 146-157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36479968

RESUMEN

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.


Asunto(s)
Virus Hendra , Lyssavirus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Ribosómico , Lyssavirus/genética , Lyssavirus/metabolismo , Ribosomas/metabolismo , Virus Hendra/genética , Virus Hendra/metabolismo , Factores de Transcripción
2.
Biochem Biophys Res Commun ; 711: 149911, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38603832

RESUMEN

Macrophages play a crucial role in host response and wound healing, with M2 polarization contributing to the reduction of foreign-body reactions induced by the implantation of biomaterials and promoting tissue regeneration. Electrical stimulation (ES) and micropatterned substrates have a significant impact on the macrophage polarization. However, there is currently a lack of well-established cell culture platforms for studying the synergistic effects of these two factors. In this study, we prepared a graphene free-standing substrate with 20 µm microgrooves using capillary forces induced by water evaporation. Subsequently, we established an ES cell culture platform for macrophage cultivation by integrating a self-designed multi-well chamber cell culture device. We observed that graphene microgrooves, in combination with ES, significantly reduce cell spreading area and circularity. Results from immunofluorescence, ELISA, and flow cytometry demonstrate that the synergistic effect of graphene microgrooves and ES effectively promotes macrophage M2 phenotypic polarization. Finally, RNA sequencing results reveal that the synergistic effects of ES and graphene microgrooves inhibit the macrophage actin polymerization and the downstream PI3K signaling pathway, thereby influencing the phenotypic transition. Our results demonstrate the potential of graphene-based microgrooves and ES to synergistically modulate macrophage polarization, offering promising applications in regenerative medicine.


Asunto(s)
Estimulación Eléctrica , Grafito , Macrófagos , Grafito/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Células RAW 264.7 , Polaridad Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
3.
Small ; 20(7): e2304588, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840413

RESUMEN

Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose-coated quantum dots (sucQD) and biocompatible carbon dots with ß-cyclodextrin molecular baskets (suc-ß-CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc-ß-CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem-loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.


Asunto(s)
Plantas , Sacarosa , Transporte Biológico , Plantas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Agroquímicos , Hojas de la Planta
4.
Chemistry ; : e202401303, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38794842

RESUMEN

Developing pragmatic strategies for accessing functional benzofuran-2-ones from 3-([1,1'-biphenyl]-2-yl)benzofuran remains an enduring challenge. Herein, we have achieved a highly discriminating electrochemical oxidative dearomative spiroannulation of 3-([1,1'-biphenyl]-2-yl)benzofuran, culminating in the synthesis of 2H-spiro[benzofuran-3,9'-fluoren]-2-one derivatives. By harnessing the electrophilic intermediates of benzofuryl radical cations supported by DFT calculations, we attain exceptional regioselectivity while eliminating the need for stoichiometric oxidants. Mechanistic investigations reveal a sequence of events involving the benzofuran radical cation, encompassing the capture of H2O, nucleophilic arene attack, and subsequent deprotonation, ultimately yielding the final benzofuran-2-ones.

5.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987851

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Asunto(s)
Senescencia Celular , Células Epiteliales , Exosomas , Túbulos Renales , Macrófagos , MicroARNs , Telómero , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular/genética , Exosomas/metabolismo , Exosomas/genética , Animales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Macrófagos/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Ratones , Telómero/genética , Telómero/metabolismo , Humanos , Ratones Endogámicos C57BL , Masculino , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Fibrosis/genética , Angiotensina II
6.
Fish Shellfish Immunol ; : 109789, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053585

RESUMEN

Bacillus genus, particularly Bacillus velezensis, is increasingly considered as viable alternatives to antibiotics in aquaculture due to their safety and probiotic potential. However, the specific mechanisms through which probiotic B. velezensis confers protection against Aeromonas hydrophila infection in fish remain poorly understood. This study delved into the multifaceted impacts of B. velezensis BV1704-Y on diverse facets of zebrafish health, including gut barrier function, immune response, oxidative stress, gut environment, microbiome composition, and disease resistance. Our findings demonstrate that supplementation with B. velezensis BV1704-Y significantly alleviated symptoms and reduced mortality in zebrafish infected with A. hydrophila. Furthermore, a notable reduction in the expression of pivotal immune-related genes, such as IL-1ß, IL6, and TNF-α, was evident in the gut and head kidney of zebrafish upon infection. Moreover, B. velezensis BV1704-Y supplementation resulted in elevated activity levels of essential antioxidant enzymes, including SOD, CAT, and GSH, in gut tissue. Notably, B. velezensis BV1704-Y positively modulated the structure and function of the intestinal microbiome, potentially enhancing immune response and resilience in zebrafish. Specifically, supplementation with B. velezensis BV1704-Y promoted the relative abundance of beneficial bacteria, such as Cetobacterium, which showed a noteworthy negative correlation with the expression of pro-inflammatory genes and a positive correlation with gut barrier-related genes. Altogether, our study suggests that B. velezensis BV1704-Y holds promise as an effective probiotic for protecting zebrafish against A. hydrophila infection, offering potential benefits for the aquaculture industry.

7.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38547102

RESUMEN

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Asunto(s)
Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción , Rayos Ultravioleta , Peróxido de Hidrógeno/química , Compuestos Orgánicos/química , Fotólisis , Contaminantes Químicos del Agua/química , Nitratos/química
8.
Anal Bioanal Chem ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358531

RESUMEN

α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.

9.
J Neuroeng Rehabil ; 21(1): 120, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026279

RESUMEN

BACKGROUND: The contribution of cholinergic degeneration to gait disturbance in Parkinson's disease (PD) is increasingly recognized, yet its relationship with dopaminergic-resistant gait parameters has been poorly investigated. We investigated the association between comprehensive gait parameters and cholinergic nucleus degeneration in PD. METHODS: This cross-sectional study enrolled 84 PD patients and 69 controls. All subjects underwent brain structural magnetic resonance imaging to assess the gray matter density (GMD) and volume (GMV) of the cholinergic nuclei (Ch123/Ch4). Gait parameters under single-task (ST) and dual-task (DT) walking tests were acquired using sensor wearables in PD group. We compared cholinergic nucleus morphology and gait performance between groups and examined their association. RESULTS: PD patients exhibited significantly decreased GMD and GMV of the left Ch4 compared to controls after reaching HY stage > 2. Significant correlations were observed between multiple gait parameters and bilateral Ch123/Ch4. After multiple testing correction, the Ch123/Ch4 degeneration was significantly associated with shorter stride length, lower gait velocity, longer stance phase, smaller ankle toe-off and heel-strike angles under both ST and DT condition. For PD patients with HY stage 1-2, there were no significant degeneration of Ch123/4, and only right side Ch123/Ch4 were corrected with the gait parameters. However, as the disease progressed to HY stage > 2, bilateral Ch123/Ch4 nuclei showed correlations with gait performance, with more extensive significant correlations were observed in the right side. CONCLUSIONS: Our study demonstrated the progressive association between cholinergic nuclei degeneration and gait impairment across different stages of PD, and highlighting the potential lateralization of the cholinergic nuclei's impact on gait impairment. These findings offer insights for the design and implementation of future clinical trials investigating cholinergic treatments as a promising approach to address gait impairments in PD.


Asunto(s)
Trastornos Neurológicos de la Marcha , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Femenino , Anciano , Estudios Transversales , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Neuronas Colinérgicas/patología , Núcleo Basal de Meynert/diagnóstico por imagen
10.
J Youth Adolesc ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033221

RESUMEN

Numerous studies have investigated the relationship between social support and problematic mobile phone use among adolescents, yet a definitive consensus remains elusive. The high prevalence of problematic mobile phone use among children and adolescents requires urgent clarity on this issue. However, previous meta-analyses on this topic have primarily focused on college students, overlooking this association in younger age groups. The present study thus concentrated on children and adolescents, conducting a three-level meta-analysis to combine existing research findings and analyze various moderators to identify sources of research heterogeneity. A systematic literature search retrieved a total of 33 studies with 135 effect sizes for this meta-analysis, and 25,537 students (53.83% female, age range 7-19, grades range 3rd-12th) were included. The results showed a negative correlation (r = -0.139) between social support and problematic mobile phone use in children and adolescents. Age, social support measurement, sources of social support, and symptoms of problematic mobile phone use were found to have a significant moderating influence. Specifically, social support showed a stronger negative correlation with problematic mobile phone use in older adolescents compared to their younger counterparts. The correlation was more pronounced when using the Multidimensional Scale of Perceived Social Support than other scales. Family support exhibited a stronger negative correlation with problematic mobile phone use compared to other sources of support. Among the symptoms of problematic mobile phone use, the inability to control craving has the strongest negative correlation with social support. This meta-analysis suggested that providing more social support, particularly in the form of family support, during the development of children and adolescents may help alleviate problematic mobile phone use.

11.
Zhongguo Zhong Yao Za Zhi ; 49(2): 518-533, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403327

RESUMEN

The efficacy and safety of different Chinese patent medicines in the treatment of coronary heart disease complicated with heart failure were evaluated by network Meta-analysis. The randomized controlled trial(RCT) of Chinese patent medicines for coronary heart disease complicated with heart failure was retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, Web of Science, EMbase, and Cochrane Library with the time interval from inception to July 5, 2023. The quality of the included RCT was evaluated by the Cochrane's risk of bias assessment tool, and a network Meta-analysis was performed in Stata 16.0. Finally, a total of 82 RCTs were included, involving 9 298 patients and 11 Chinese patent medicines. Network Meta-analysis yielded the following results based on the surface under the cumulative ranking curve(SUCRA).(1)In terms of improving the clinical response rate, the top three interventions were Qishen Yiqi Dripping Pills + conventional western medicine, Zhenyuan Capsules + conventional western medicine, and Tongxinluo Capsules + conventional western medicine.(2) In terms of increasing left ventricular ejection fraction(LVEF), the top three interventions were Shexiang Baoxin Pills + conventional western medicine, Compound Danshen Dripping Pills + conventional western medicine, and Tongxinluo Capsules + conventional western medicine.(3) In terms of reducing left ventricular end-diastolic diameter(LVEDD), the top three interventions were Shexiang Tongxin Dripping Pills + conventional western medicine, Tongxinluo Capsules + conventional western medicine, and Shexiang Baoxin Pills + conventional western medicine.(4) In terms of reducing N-terminal pro-brain natriuretic peptide(NT-proBNP), the top three interventions were Shexiang Baoxin Pills + conventional western medicine, Qi-shen Yiqi Dripping Pills + conventional western medicine, and Compound Danshen Dripping Pills + conventional western medicine.(5) In terms of reducing hyper-sensitive C-reactive protein(hs-CRP), the top three interventions were Naoxintong Capsules + conventional western medicine, Shexiang Baoxin Pills + conventional western medicine, and Compound Danshen Dripping Pills + conventional western medicine.(6) In terms of increasing the distance of the six-minute walking trail(6MWT), the top three interventions were Zhen-yuan Capsules + conventional western medicine, Qili Qiangxin Capsules + conventional western medicine, and Qishen Yiqi Dripping Pills + conventional western medicine. The results showed that Chinese patent medicines combined with conventional western medicine can effectively improve the clinical response rate, LVEF, and 6MWT and reduce LVEDD, NT-proBNP, and hs-CRP. However, due to the overall low quality of the articles included and the few articles of some Chinese patent medicines, direct comparison between diffe-rent Chinese patent medicines remains to be carried out and the results need to be further verified.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Humanos , Metaanálisis en Red , Medicamentos sin Prescripción/uso terapéutico , Proteína C-Reactiva , Volumen Sistólico , Función Ventricular Izquierda , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedad Coronaria/complicaciones , Enfermedad Coronaria/tratamiento farmacológico , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/tratamiento farmacológico
12.
Plant Cell Physiol ; 64(1): 117-123, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36264192

RESUMEN

Apomixis, defined as the transfer of maternal germplasm to offspring without fertilization, enables the fixation of F1-useful traits, providing advantages in crop breeding. However, most apomictic plants require pollination to produce the endosperm. The endosperm is essential for embryogenesis, and its development is suppressed until fertilization. We show that the expression of a chimeric repressor of the Elongation of Siliques without Pollination 3 (ESP3) gene (Pro35S:ESP3-SRDX) induces ovule enlargement without fertilization in Arabidopsis thaliana. The ESP3 gene encodes a protein similar to the flowering Wageningen homeodomain transcription factor containing a StAR-related lipid transfer domain. However, ESP3 lacks the homeobox-encoding region. Genes related to the cell cycle and sugar metabolism were upregulated in unfertilized Pro35S:ESP3-SRDX ovules similar to those in fertilized seeds, while those related to autophagy were downregulated similar to those in fertilized seeds. Unfertilized Pro35S:ESP3-SRDX ovules partially nourished embryos when only the egg was fertilized, accumulating hexoses without central cell proliferation. ESP3 may regulate nutrient flow during seed development, and ESP3-SRDX could be a useful tool for complete apomixis that does not require pseudo-fertilization.


Asunto(s)
Arabidopsis , Polinización , Semillas/metabolismo , Endospermo/genética , Reproducción , Arabidopsis/genética , Desarrollo Embrionario , Óvulo Vegetal/genética
13.
J Clin Microbiol ; 61(6): e0183222, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37249422

RESUMEN

The Xpert MTB/XDR assay met the critical need for etiologic diagnosis of tuberculosis and rifampin resistance in previous studies. However, its benefits in tailoring the treatment regimen and improving the outcome for patients with rifampin-resistant tuberculosis (RR-TB) require further investigation. In this study, the Xpert MTB/XDR assay was used to determine the resistance profile of second-line drugs for RR-TB patients in two registered multicenter clinical trials, TB-TRUST (NCT03867136) and TB-TRUST-plus (NCT04717908), with the aim of testing the efficacy of all-oral shorter regimens in RR-TB patients in China. Patients would receive the fluoroquinolone-based all-oral shorter regimen, the injectable-containing regimen, or the bedaquiline-based regimen depending on fluoroquinolone susceptibility by using Xpert MTB/XDR. Among the 497 patients performed with Xpert MTB/XDR, 128 (25.8%) had infections resistant to fluoroquinolones and/or second-line injectable drugs (SLIDs). A total of 371 participants were recruited for the trials, and whole-genome sequencing (WGS) was performed on all corresponding culture-positive baseline strains. Taking the WGS results as the standard, the accuracy of the Xpert MTB/XDR assay in terms of resistance detection was 95.2% to 99.0% for all drugs. A total of 33 cases had inconsistent results, 9 of which were due to resistance heterogeneity. Most of the patients (241/281, 85.8%) had sputum culture conversion at 2 months. In conclusion, the Xpert MTB/XDR assay has the potential to serve as a quick reflex test in patients with RR-TB, as detected via Xpert MTB/RIF, to provide a reliable drug susceptibility profile of the infecting Mycobacterium tuberculosis strain and to initiate optimized treatment promptly.


Asunto(s)
Antibióticos Antituberculosos , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Rifampin/farmacología , Rifampin/uso terapéutico , Antibióticos Antituberculosos/farmacología , Sensibilidad y Especificidad , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/genética , Fluoroquinolonas/farmacología , Fluoroquinolonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana , Esputo/microbiología
14.
Am J Pathol ; 192(1): 104-111, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34756873

RESUMEN

The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. Following TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in cultured primary mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels were observed in mouse tracheas. In conclusion, this study shows that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.


Asunto(s)
Contracción Muscular , Músculo Liso/fisiología , Tráquea/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Carbacol/farmacología , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Fosfotirosina/metabolismo , Proteína Quinasa C/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/fisiología , Transducción de Señal/efectos de los fármacos , Tráquea/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/metabolismo
15.
Theor Appl Genet ; 136(9): 205, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668671

RESUMEN

KEY MESSAGE: In total, 17 QTLs for lint percentage in short-season cotton, including three stable QTLs, were detected. Twenty-eight differentially expressed genes located within the stable QTLs were identified, and two genes were validated by qRT-PCR. The breeding and use of short-season cotton have significant values in addressing the question of occupying farmlands with either cotton or cereals. However, the fiber yields of short-season cotton varieties are significantly lower than those of middle- and late-maturing varieties. How to effectively improve the fiber yield of short-season cotton has become a focus of cotton research. Here, a high-density genetic map was constructed using genome resequencing and an RIL population generated from the hybridization of two short-season cotton accessions, Dong3 and Dong4. The map contained 4960 bin markers across the 26 cotton chromosomes and spanned 3971.08 cM, with an average distance of 0.80 cM between adjacent markers. Based on the genetic map, quantitative trait locus (QTL) mapping for lint percentage (LP, %), an important yield component trait, was performed. In total, 17 QTLs for LP, including three stable QTLs, qLP-A02, qLP-D04, and qLP-D12, were detected. Three out of 11 non-redundant QTLs overlapped with previously reported QTLs, whereas the other eight were novel QTLs. A total of 28 differentially expressed genes associated with the three stable QTLs were identified using RNA-seq of ovules and fibers at different seed developmental stages from the parental materials. The two genes, Ghir_A02G017640 and Ghir_A02G018500, may be related to LP as determined by further qRT-PCR validation. This study provides useful information for the genetic dissection of LP and promotes the molecular breeding of short-season cotton.


Asunto(s)
Gossypium , Fitomejoramiento , RNA-Seq , Estaciones del Año , Mapeo Cromosómico , Gossypium/genética
16.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37039838

RESUMEN

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Asunto(s)
Exosomas , Quercetina , Ratones , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Exosomas/metabolismo , Lipopolisacáridos/farmacología , Inflamación/metabolismo , Macrófagos/metabolismo , Fibrosis , Células Epiteliales/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología
17.
BMC Infect Dis ; 23(1): 300, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158831

RESUMEN

BACKGROUND: Standard treatment for drug-susceptible tuberculosis (DS-TB) includes a multidrug regimen requiring at least 6 months of treatment, and this lengthy treatment easily leads to poor adherence. There is an urgent need to simplify and shorten treatment regimens to reduce interruption and adverse event rates, improve compliance, and reduce costs. METHODS: ORIENT is a multicenter, randomized controlled, open-label, phase II/III, non-inferiority trial involving DS-TB patients to evaluate the safety and efficacy of short-term regimens compared with the standardized six-month treatment regimen. In stage 1, corresponding to a phase II trial, a total of 400 patients are randomly divided into four arms, stratified by site and the presence of lung cavitation. Investigational arms include 3 short-term regimens with rifapentine 10 mg/kg, 15 mg/kg, and 20 mg/kg, while the control arm uses the standardized six-month treatment regimen. A combination of rifapentine, isoniazid, pyrazinamide, and moxifloxacin is administered for 17 or 26 weeks in rifapentine arms, while a 26-week regimen containing rifampicin, isoniazid, pyrazinamide, and ethambutol is applied in the control arm. After the safety and preliminary effectiveness analysis of patients in stage 1, the control arm and the investigational arm meeting the conditions will enter into stage 2, which is equivalent to a phase III trial and will be expanded to recruit DS-TB patients. If all investigational arms do not meet the safety conditions, stage 2 will be canceled. In stage 1, the primary safety endpoint is permanent regimen discontinuation at 8 weeks after the first dose. The primary efficacy endpoint is the proportion of favorable outcomes at 78 weeks after the first dose for both two stages. DISCUSSION: This trial will contribute to the optimal dose of rifapentine in the Chinese population and suggest the feasibility of the short-course treatment regimen containing high-dose rifapentine and moxifloxacin for DS-TB. TRIAL REGISTRATION: The trial has been registered on ClinicalTrials.gov on 28 May 2022 with the identifier NCT05401071.


Asunto(s)
Rifampin , Tuberculosis , Humanos , Rifampin/efectos adversos , Isoniazida/efectos adversos , Pirazinamida , Moxifloxacino/uso terapéutico , Tuberculosis/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase II como Asunto
18.
Environ Sci Technol ; 57(22): 8269-8279, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37227395

RESUMEN

An incomplete understanding of how agrochemical nanocarrier properties affect their uptake and translocation in plants limits their application for promoting sustainable agriculture. Herein, we investigated how the nanocarrier aspect ratio and charge affect uptake and translocation in monocot wheat (Triticum aestivum) and dicot tomato (Solanum lycopersicum) after foliar application. Leaf uptake and distribution to plant organs were quantified for polymer nanocarriers with the same diameter (∼10 nm) but different aspect ratios (low (L), medium (M), and high (H), 10-300 nm long) and charges (-50 to +15 mV). In tomato, anionic nanocarrier translocation (20.7 ± 6.7 wt %) was higher than for cationic nanocarriers (13.3 ± 4.1 wt %). In wheat, only anionic nanocarriers were transported (8.7 ± 3.8 wt %). Both low and high aspect ratio polymers translocated in tomato, but the longest nanocarrier did not translocate in wheat, suggesting a phloem transport size cutoff. Differences in translocation correlated with leaf uptake and interactions with mesophyll cells. The positive charge decreases nanocarrier penetration through the leaf epidermis and promotes uptake into mesophyll cells, decreasing apoplastic transport and phloem loading. These results suggest design parameters to provide agrochemical nanocarriers with rapid and complete leaf uptake and an ability to target agrochemicals to specific plant organs, with the potential to lower agrochemical use and the associated environmental impacts.


Asunto(s)
Agroquímicos , Polímeros , Hojas de la Planta , Transporte Biológico , Triticum
19.
Phys Chem Chem Phys ; 25(37): 25581-25593, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37721015

RESUMEN

Cu-based catalysts are a promising alternative to toxic mercury catalysts for acetylene hydrochlorination, but their effectiveness is limited due to the poor dispersion and deactivation caused by reduction, agglomeration, and carbon deposition. In this study, the activity and stability of carbon-supported CuCl2 catalysts were largely improved by introducing N-heterocyclic ketones. Remarkably, N-methyl-2-pyridone (NM2P) coordinated Cu-based catalysts exhibited over 95% acetylene conversion with better stability under the reaction conditions of T = 180 °C, GHSV (C2H2) of 80 h-1, and VHCl/VC2H2 = 1.2. The combined results of characterization and exhaustive density functional theory (DFT) calculations revealed that the O-Cu coordination between the NM2P ligand and Cu cation strengthened the combination of reactants and Cu active sites, lowering the key reaction energy barrier, thereby leading to high activity. Meanwhile, the addition of the NM2P ligand significantly inhibited the reduction of Cu2+ to Cu+/Cu0, avoiding the formation of CuCl aggregates and the coking caused by Cu0, enhancing the catalytic stability. Overall, our study provides important insights into the design and optimization of Cu-based catalysts for acetylene hydrochlorination.

20.
Mol Ther ; 30(10): 3300-3312, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35581939

RESUMEN

Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.


Asunto(s)
Antineoplásicos , Simportadores , Animales , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Electrólitos , Riñón/metabolismo , Ratones , Miembro 1 de la Familia de Transportadores de Soluto 12 , Simportadores/genética , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA