Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(11): 4665-4672, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456411

RESUMEN

Detecting scandium (Sc) with high selectivity and sensitivity is a challenging task due to its chemical similarity to other rare earth ions. Our findings show that the fluorescence of the complex fluorescent indicator calcein (CL) is quenched under acidic conditions (pH = 2), and Sc3+ strongly inhibits this process. The results demonstrate that CL forms multimers and precipitates out of the solution under acidic conditions, while Sc3+ causes a significant decrease in the scattering intensity of the solution. Additional experiments revealed that the strong Lewis acid nature of Sc3+ complexes with the carboxyl groups of CL leads to increased dispersion of CL even under acidic conditions, thus enhancing its absorption and fluorescence. The complexation ratio of Sc3+ and CL was investigated through spectral titrations and theoretical calculations. The interaction between Sc3+ and CL is the strongest among rare earth and common metal ions due to the smallest ionic radius, resulting in high selectivity. The fluorescence turn-on strategy had a linear range of 0.04 to 2.25 µM under optimal conditions, with a detection limit of 20 nM for Sc3+. The combination of 3D printing and a smartphone program allows for portable on-site analysis of Sc3+. Mineral and water samples were used to demonstrate the potential of this strategy for the rapid, selective, and sensitive analysis of low levels of Sc3+.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA