Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 59, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347563

RESUMEN

BACKGROUND: Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS: Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-ß (TGF-ß) signaling pathway. CONCLUSION: Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.


Asunto(s)
Compuestos de Calcio , Nanofibras , Silicatos , Andamios del Tejido , Andamios del Tejido/química , Hidrogeles/farmacología , Hidrogeles/química , Angiogénesis , Regeneración Ósea , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Impresión Tridimensional , Osteogénesis , Ingeniería de Tejidos
2.
Psychopathology ; 57(2): 111-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37647878

RESUMEN

INTRODUCTION: Adolescents with major depressive disorder (MDD) exhibit hypoactivity to positive stimuli and hyperactivity to negative stimuli in terms of neural responses. Automatic emotion regulation (AER) activates triple networks (i.e., the central control network, default mode network, and salience network). Based on previous studies, we hypothesized that adolescents with MDD exhibit dissociable spatiotemporal deficits during positive and negative AER. METHODS: We first collected EEG data from 32 adolescents with MDD and 35 healthy adolescents while they performed an implicit emotional Go/NoGo task. Then, we characterized the spatiotemporal dynamics of cortical activity during AER. RESULTS: In Go trials, MDD adolescents exhibited reduced N2 amplitudes, enhanced theta power for positive pictures, and stronger bottom-up information flow from the left orbitofrontal cortex (OFC) to the right superior frontal gyrus compared to top-down information flow than the controls. In contrast, in NoGo trials, MDD adolescents exhibited elevated P3 amplitudes, enhanced theta power, and stronger top-down information flows from the right middle frontal gyrus to the right OFC and the left insula than the controls. CONCLUSION: Overall, adolescents with MDD exhibited impaired automatic attention to positive emotions and impaired automatic response inhibition. These findings have potential implications for the clinical treatment of adolescents with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Regulación Emocional , Humanos , Adolescente , Trastorno Depresivo Mayor/psicología , Emociones/fisiología , Imagen por Resonancia Magnética
3.
J Biol Chem ; 298(6): 102033, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35595096

RESUMEN

The human rhomboid-5 homolog-1 (RHBDF1) is a multi-transmembrane protein present mainly on the endoplasmic reticulum. RHBDF1 has been implicated in the activation of epidermal growth factor receptor (EGFR)-derived cell growth signals and other activities critical to cellular responses to stressful conditions, but details of this activation mechanism are unclear. Here, we report a RHBDF1 mRNA transcript alternative splicing variant X6 (RHBDF1 X6 or RHX6) that antagonizes RHBDF1 activities. We found that while the RHBDF1 gene is marginally expressed in breast tumor-adjacent normal tissues, it is markedly elevated in the tumor tissues. In sharp contrast, the RHX6 mRNA represents the primary RHBDF1 variant in normal breast epithelial cells and tumor-adjacent normal tissues but is diminished in breast cancer cells and tumors. We demonstrate that, functionally, RHX6 acts as an inhibitor of RHBDF1 activities. We show that artificially overexpressing RHX6 in breast cancer cells leads to retarded proliferation, migration, and decreased production of epithelial-mesenchymal transition-related adhesion molecules. Mechanically, RHX6 is able to inhibit the maturation of TACE, a protease that processes pro-TGFα, a pro-ligand of EGFR, and to prevent intracellular transportation of pro-TGFα to the cell surface. Additionally, we show that the production of RHX6 is under the control of the alternative splicing regulator RNA binding motif protein-4 (RBM4). Our findings suggest that differential splicing of the RHBDF1 gene transcript may have a regulatory role in the development of epithelial cell cancers.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama , Receptores ErbB , Proteínas de la Membrana , Neoplasias de la Mama/genética , Línea Celular Tumoral , Receptores ErbB/metabolismo , Femenino , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo
4.
Proc Biol Sci ; 290(1994): 20230107, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36855871

RESUMEN

Nematodes are the most abundant multi-cellular animals in soil, influencing key processes and functions in terrestrial ecosystems. Yet, little is known about the drivers of nematode abundance and diversity in forest soils across climatic zones. This is despite forests covering approximately 30% of the Earth's land surface, providing many crucial ecosystem services but strongly varying in climatic conditions and associated ecosystem properties across biogeographic zones. Here, we collected nematode samples from 13 forests across a latitudinal gradient. We divided this gradient into temperate, warm-temperate and tropical climatic zones and found that, across the gradient, nematode abundance and diversity were mainly influenced by soil organic carbon content. However, mean annual temperature and total soil phosphorus content in temperate zones, soil pH in warm-temperate zones, and mean annual precipitation in tropical zones were more important in driving nematode alpha-diversity, biomass and abundance. Additionally, nematode beta-diversity was higher in temperate than in warm-temperate and tropical zones. Together, our findings demonstrate that the drivers of nematode diversity in forested ecosystems are affected by the spatial scale and climatic conditions considered. This implies that high resolution studies are needed to accurately predict how soil functions respond if climate conditions move beyond the coping range of soil organisms.


Asunto(s)
Ecosistema , Nematodos , Animales , Suelo , Carbono , Bosques
5.
Environ Monit Assess ; 195(6): 679, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37191764

RESUMEN

Land use change could profoundly influence the terrestrial ecosystem carbon (C) cycle. However, the effects of agricultural expansion and cropland abandonment on soil microbial respiration remain controversial, and the underlying mechanisms of the land use change effect are lacking. In this study, we conducted a comprehensive survey in four land use types (grassland, cropland, orchard, and old-field grassland) of North China Plain with eight replicates to explore the responses of soil microbial respiration to agricultural expansion and cropland abandonment. We collected surface soil (0-10 cm in depth) in each land use type to measure soil physicochemical property and microbial analysis. Our results showed that soil microbial respiration was significantly increased by 15.10 mg CO2 kg-1 day-1 and 20.06 mg CO2 kg-1 day-1 due to the conversion of grassland to cropland and orchard, respectively. It confirmed that agricultural expansion might exacerbate soil C emissions. On the contrary, the returning of cropland and orchard to old-field grassland significantly decreased soil microbial respiration by 16.51 mg CO2 kg-1 day-1 and 21.47 mg CO2 kg-1 day-1, respectively. Effects of land use change on soil microbial respiration were predominately determined by soil organic and inorganic nitrogen contents, implying that nitrogen fertilizer plays an essential role in soil C loss. These findings highlight that cropland abandonment can effectively mitigate soil CO2 emissions, which should be implemented in agricultural lands with low grain production and high C emissions. Our results improve mechanistic understanding on the response of soil C emission to land use changes.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Agricultura , China , Grano Comestible/química , Nitrógeno/análisis
6.
J Nanobiotechnology ; 20(1): 162, 2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35351145

RESUMEN

BACKGROUND: The repair of tissue defects has attracted considerable attention and remained a substantial challenge. Calcium silicate (CaSiO3, CS) bioceramics have attracted the interest of researchers due to their excellent biodegradability. Recent studies have demonstrated that nanoscale-modified bioactive materials with favorable biodegradability could promote bone tissue regeneration, providing an alternative approach for the repair of bone defects. However, the direct construction of biodegradable nanostructures in situ on CS bioceramics was still difficult. RESULTS: In this study, flower-like nanostructures were flexibly prepared in situ on biodegradable CS bioceramics via hydrothermal treatment. The flower-like nanostructure surfaces exhibited better hydrophilicity and more significantly stimulated cell adhesion, alkaline phosphatase (ALP) activity, and osteogenic differentiation. Furthermore, the CS bioceramics with flower-like nanostructures effectively promoted bone regeneration and were gradually replaced with newly formed bone due to the favorable biodegradability of these CS bioceramics. Importantly, we revealed an osteogenesis-related mechanism by which the FAK/p38 signaling pathway could be involved in the regulation of bone mesenchymal stem cell (BMSC) osteogenesis by the flower-like nanostructure surfaces. CONCLUSIONS: Flower-like nanostructure surfaces on CS bioceramics exerted a strong effect on promoting bone repair and regeneration, suggesting their excellent potential as bone implant candidates for improving bone regeneration.


Asunto(s)
Nanoestructuras , Osteogénesis , Regeneración Ósea , Compuestos de Calcio , Transducción de Señal , Silicatos
7.
BMC Infect Dis ; 21(1): 608, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34171991

RESUMEN

BACKGROUND: Convenient and precise assessment of the severity in coronavirus disease 2019 (COVID-19) contributes to the timely patient treatment and prognosis improvement. We aimed to evaluate the ability of CT-based radiomics nomogram in discriminating the severity of patients with COVID-19 Pneumonia. METHODS: A total of 150 patients (training cohort n = 105; test cohort n = 45) with COVID-19 confirmed by reverse transcription polymerase chain reaction (RT-PCR) test were enrolled. Two feature selection methods, Max-Relevance and Min-Redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO), were used to extract features from CT images and construct model. A total of 30 radiomic features were finally retained. Rad-score was calculated by summing the selected features weighted by their coefficients. The radiomics nomogram incorporating clinical-radiological features was eventually constructed by multivariate regression analysis. Nomogram, calibration, and decision-curve analysis were all assessed. RESULTS: In both cohorts, 40 patients with COVID-19 pneumonia were severe and 110 patients were non-severe. By combining the 30 radiomic features extracted from CT images, the radiomics signature showed high discrimination between severe and non-severe patients in the training set [Area Under the Curve (AUC), 0.857; 95% confidence interval (CI), 0.775-0.918] and the test set (AUC, 0.867; 95% CI, 0.732-949). The final combined model that integrated age, comorbidity, CT scores, number of lesions, ground glass opacity (GGO) with consolidation, and radiomics signature, improved the AUC to 0.952 in the training cohort and 0.98 in the test cohort. The nomogram based on the combined model similarly exhibited excellent discrimination performance in both training and test cohorts. CONCLUSIONS: The developed model based on a radiomics signature derived from CT images can be a reliable marker for discriminating the severity of COVID-19 pneumonia.


Asunto(s)
COVID-19/diagnóstico por imagen , COVID-19/diagnóstico , Nomogramas , Tomografía Computarizada por Rayos X/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , SARS-CoV-2/patogenicidad
8.
Bioorg Med Chem ; 29: 115899, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33285409

RESUMEN

Cyclic dinucleotides (CDNs) could activate stimulator of interferon genes (STING) protein to produce type I interferon and other pro-inflammation cytokines in mammalian cells. To explore new types of potentially efficient STING activators targeting all five major hSTING variants (WT, R232H, HAQ, AQ and R293Q), we here reported the synthesis of a total of 19 inosine-containing CDNs based on the combinations of hypoxanthine with four natural bases (A, G, C and U) and three phosphodiester linkage backbones (3'-3', 2'-3', 2'-2'). The IFN-ß induction results showed that all of the 2'-3' and 2'-2' CDNs linked by inosine and purine nucleosides favored the stacking interaction with Y167 and R238 residues of hSTING protein, and several CDNs constructed by hypoxanthine and pyrimidine like c[I(2',5')U(2',5')] could also activate all five hSTING variants. The molecular dynamic simulation and the isothermal titration calorimetric (ITC) assay further demonstrated the potential of cAIMP isomers with 2'-5' phosphate to form the hydrogen binding with R232 and R238 residues of hSTING in an entropically driven manner compared to cGAMP isomers. It would be promising to exploit novel inosine-mixed CDNs as activators of hSTING variants in immune therapy.


Asunto(s)
GMP Cíclico/química , GMP Cíclico/metabolismo , Fosfatos de Dinucleósidos/química , Inosina/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Citocinas/metabolismo , Diseño de Fármacos , Humanos , Hipoxantina/química , Isomerismo , Simulación del Acoplamiento Molecular , Unión Proteica , Pirimidinas/química , Transducción de Señal , Relación Estructura-Actividad
9.
BMC Plant Biol ; 20(1): 288, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571226

RESUMEN

BACKGROUND: Environmental stress is a crucial factor restricting plant growth as well as crop productivity, thus influencing the agricultural sustainability. Biochar addition is proposed as an effective management to improve crop performance. However, there were few studies focused on the effect of biochar addition on crop growth and productivity under interactive effect of abiotic stress (e.g., drought and salinity). This study was conducted with a pot experiment to investigate the interaction effects of drought and salinity stress on soybean yield, leaf gaseous exchange and water use efficiency (WUE) under biochar addition. RESULTS: Drought and salinity stress significantly depressed soybean phenology (e.g. flowering time) and all the leaf gas exchange parameters, but had inconsistent effects on soybean root growth and WUE at leaf and yield levels. Salinity stress significantly decreased photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate by 20.7, 26.3, 10.5 and 27.2%, respectively. Lower biomass production and grain yield were probably due to the restrained photosynthesis under drought and salinity stress. Biochar addition significantly enhanced soybean grain yield by 3.1-14.8%. Drought stress and biochar addition significantly increased WUE-yield by 27.5 and 15.6%, respectively, while salinity stress significantly decreased WUE-yield by 24.2%. Drought and salinity stress showed some negative interactions on soybean productivity and leaf gaseous exchange. But biochar addition alleviate the negative effects on soybean productivity and water use efficiency under drought and salinity stress. CONCLUSIONS: The results of the present study indicated that drought and salinity stress could significantly depress soybean growth and productivity. There exist interactive effects of drought and salinity stress on soybean productivity and water use efficiency, while we could employ biochar to alleviate the negative effects. We should consider the interactive effects of different abiotic restriction factors on crop growth thus for sustainable agriculture in the future.


Asunto(s)
Carbón Orgánico , Sequías , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Biomasa , Gases/metabolismo , Hojas de la Planta/metabolismo , Estrés Salino , Glycine max/metabolismo , Agua/metabolismo
10.
Small ; 15(25): e1805440, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31106983

RESUMEN

Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS-scavenging, and osteoinductive porous Ti scaffold is prepared by the on-surface in situ assembly of a polypyrrole-polydopamine-hydroxyapatite (PPy-PDA-HA) film through a layer-by-layer pulse electrodeposition (LBL-PED) method. During LBL-PED, the PPy-PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy-PDA-HA films. Ultimately, the PPy-PDA-HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy-PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.


Asunto(s)
Materiales Biomiméticos/química , Bivalvos/química , Electroquímica , Depuradores de Radicales Libres/química , Nanopartículas/química , Oseointegración , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Durapatita/síntesis química , Durapatita/química , Estimulación Eléctrica , Indoles/síntesis química , Indoles/química , Ratones , Oseointegración/efectos de los fármacos , Polímeros/síntesis química , Polímeros/química , Porosidad , Pirroles/síntesis química , Pirroles/química , Células RAW 264.7 , Conejos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Andamios del Tejido/química
11.
Mol Ecol ; 26(16): 4186-4196, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28570016

RESUMEN

Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p < .039) by both soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling.


Asunto(s)
Bacterias/clasificación , Pradera , Microbiología del Suelo , Suelo/química , Carbono/análisis , China , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis
12.
BMC Pharmacol Toxicol ; 25(1): 10, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225635

RESUMEN

BACKGROUND: Cantharidin (CTD), the main toxic component of Mylabris, has been extensively used for tumor treatment in recent years. CTD-induced liver toxicity has attracted significant interest in clinic. METHODS: In this study, biochemical parameters and liver pathological changes were analyzed after CTD was administered to mice by gavage. Subsequently, a lipidomic approach was used to investigate serum lipid metabolism disorders, and the mechanism underlying CTD-induced liver injury in mice was explored. RESULTS: The results showed that the levels of TC and LDL-C were significantly increased after CTD intervention. Besides, pathological results showed inflammatory cell infiltration and hepatocyte necrosis in the liver. Furthermore, lipidomics found that a total of 18 lipid metabolites were increased and 40 were decreased, including LPC(20:4), LPC(20:3), PC(22:6e/2:0), PE(14:0e/21:2), PC(18:2e/22:6), glycerophospholipids, CE(16:0), CE(18:0) Cholesterol esters and TAG(12:0/12:0/22:3), TAG(16:1/16:2/20:4), TAG(18:1/18:1/20:0), TAG(16:2/18:2/18:2), TAG(18:0/18:0/20:0), TAG(13:1/19:0/19:0) glycerolipids. Metabolic pathway analysis found that glycerophospholipid, glycerol ester and glycosylphosphatidylinositol (GPI)-anchored biosynthetic metabolic pathways were dysregulated and the increase in PE caused by glycophoric metabololism and GPI may be the source of lipid metabolism disorders caused by CTD. Overall, the present study provided new insights into the mechanism of CTD-induced liver injury and increased drug safety during clinical application.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Trastornos del Metabolismo de los Lípidos , Ratones , Animales , Lipidómica , Cantaridina , Metabolismo de los Lípidos
13.
Carbohydr Polym ; 332: 121933, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431401

RESUMEN

Minimally invasive, efficient, and satisfactory treatment for irregular and lacunar bone defects is still a challenge. Alginate hydrogels serve as promising stem cell (SC) delivery systems for bone regeneration but are limited by low cellular viability, poor osteogenic differentiation, and insufficient mechanical support. Herein, we developed a BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres (BCHMs) system via a microfluidic method that possesses 1) a uniform size and good injectability to meet clinical bone defects with complex shapes, 2) high cellular viability maintenance and further osteogenic induction capacity, and 3) improved mechanical properties. As the main matrix, the sodium alginate hydrogel maintains the high viability of encapsulated BMSCs and efficient substance exchange. Enhanced mechanical properties and osteogenic differentiation of the BCHMs in vitro were observed with xonotlite (Ca6Si6O17(OH)2, CSH) nanowires incorporated. Furthermore, BCHMs with 12.5 % CSH were injected into rat femoral bone defects, and satisfactory in situ regeneration outcomes were observed. Overall, it is believed that BCHMs expand the application of polysaccharide science and provide a promising injectable bone substitute for minimally invasive bone repair.


Asunto(s)
Hidrogeles , Osteogénesis , Ratas , Animales , Hidrogeles/farmacología , Microesferas , Regeneración Ósea , Alginatos
14.
PeerJ ; 12: e17176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560479

RESUMEN

The effects of nitrogen application or earthworms on soil respiration in the Huang-Huai-Hai Plain of China have received increasing attention. However, the response of soil carbon dioxide (CO2) emission to nitrogen application and earthworm addition is still unclear. A field experiment with nitrogen application frequency and earthworm addition was conducted in the Huang-Huai-Hai Plain. Results showed nitrogen application frequency had a significant effect on soil respiration, but neither earthworms nor their interaction with nitrogen application frequency were significant. Low-frequency nitrogen application (NL) significantly increased soil respiration by 25%, while high-frequency nitrogen application (NH), earthworm addition (E), earthworm and high-frequency nitrogen application (E*NH), and earthworm and low-frequency nitrogen application (E*NL) also increased soil respiration by 21%, 21%, 12%, and 11%, respectively. The main reason for the rise in soil respiration was alterations in the bacterial richness and keystone taxa (Myxococcales). The NH resulted in higher soil nitrogen levels compared to NL, but NL had the highest bacterial richness. The abundance of Corynebacteriales and Gammaproteobacteria were positively connected with the CO2 emissions, while Myxococcales, Thermoleophilia, and Verrucomicrobia were negatively correlated. Our findings indicate the ecological importance of bacterial communities in regulating the carbon cycle in the Huang-Huai-Hai Plain.


Asunto(s)
Myxococcales , Oligoquetos , Animales , Dióxido de Carbono , Glycine max , Nitrógeno/farmacología , Suelo , Productos Agrícolas
15.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1435-1446, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38886443

RESUMEN

As regulators of the surface land processes, soil fauna communities are the vital foundations for healthy terrestrial ecosystems. Soil fauna have been studied in China for more than 70 years. Great progresses have been achieved in exploring soil fauna species composition and geographical distribution patterns. Soil fauna eco-geography, as a bridge between soil fauna geographic patterns and ecosystem services, has a new development opportunity with the deep recognition of soil fauna ecological functions. Soil fauna eco-geography research could be partitioned into four dimensions including the spatio-temporal patterns of: 1) the apparent characteristics of soil fauna community, such as species composition, richness and abundance; 2) the intrinsic characteristics of soil fauna community, such as dietary and habits; 3) soil fauna-related biotic and abiotic interactions especially those indicating drivers of soil fauna community structure or shaping the roles of soil fauna in ecosystems; and 4) soil fauna-related or -regulated key ecological processes. Current studies focus solely on soil fauna themselves and their geographical distributions. To link soil fauna geography more closely with ecosystem services, we suggested that: 1) converting the pure biogeography studies to those of revealing the spatio-temporal patterns of the soil fauna-related or regulated key relationships and ecological processes;2) expanding the temporal and spatial scales in soil fauna geographical research;3) exploring the integrated analysis approach for soil fauna-related data with multi-scales, multi-factors, and multi-processes;and 4) establishing standard reference systems for soil fauna eco-geographical researches. Hence, the change patterns of ecological niche of soil fauna communities could be illustrated, and precision mani-pulations of soil fauna communities and their ecological functions would become implementable, which finally contributes to ecosystem health and human well-being.


Asunto(s)
Biodiversidad , Ecosistema , Suelo , China , Suelo/química , Animales , Invertebrados/clasificación , Invertebrados/crecimiento & desarrollo , Geografía
16.
Sci Adv ; 10(5): eadk6643, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306426

RESUMEN

Conductive hydrogels have a remarkable potential for applications in soft electronics and robotics, owing to their noteworthy attributes, including electrical conductivity, stretchability, biocompatibility, etc. However, the limited strength and toughness of these hydrogels have traditionally impeded their practical implementation. Inspired by the hierarchical architecture of high-performance biological composites found in nature, we successfully fabricate a robust and sensitive conductive nanocomposite hydrogel through self-assembly-induced bridge cross-linking of MgB2 nanosheets and polyvinyl alcohol hydrogels. By combining the hierarchical lamellar microstructure with robust molecular B─O─C covalent bonds, the resulting conductive hydrogel exhibits an exceptional strength and toughness. Moreover, the hydrogel demonstrates exceptional sensitivity (response/relaxation time, 20 milliseconds; detection lower limit, ~1 Pascal) under external deformation. Such characteristics enable the conductive hydrogel to exhibit superior performance in soft sensing applications. This study introduces a high-performance conductive hydrogel and opens up exciting possibilities for the development of soft electronics.

17.
Int J Nanomedicine ; 18: 3761-3780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457798

RESUMEN

Recently, programmable assembly technologies have enabled the application of DNA in the creation of new nanomaterials with unprecedented functionality. One of the most common DNA nanostructures is the tetrahedral DNA nanostructure (TDN), which has attracted great interest worldwide due to its high stability, simple assembly procedure, high predictability, perfect programmability, and excellent biocompatibility. The unique spatial structure of TDN allows it to penetrate cell membranes in abundance and regulate cellular biological properties as a natural genetic material. Previous studies have demonstrated that TDNs can regulate various cellular biological properties, including promoting cells proliferation, migration and differentiation, inhibiting cells apoptosis, as well as possessing anti-inflammation and immunomodulatory capabilities. Furthermore, functional molecules can be easily modified at the vertices of DNA tetrahedron, DNA double helix structure, DNA tetrahedral arms or DNA tetrahedral cage structure, enabling TDN to be used as a nanocarrier for a variety of biological applications, including targeted therapies, molecular diagnosis, biosensing, antibacterial treatment, antitumor strategies, and tissue regeneration. In this review, we mainly focus on the current progress of TDN-based nanomaterials for antimicrobial applications, bone and cartilage tissue repair and regeneration. The synthesis and characterization of TDN, as well as the biological merits are introduced. In addition, the challenges and prospects of TDN-based nanomaterials are also discussed.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanoestructuras/química , Proliferación Celular , Regeneración Ósea , Antibacterianos/farmacología
18.
J Mater Chem B ; 11(17): 3816-3822, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37092687

RESUMEN

Degradable bioceramics such as hydroxyapatite (HA) are usually used as bone grafts due to their excellent osteoconductive ability. Recent studies have proved that decorated micro/nano-structures on HA could enhance its osteogenic capacity by directly activating osteogenic differentiation of bone marrow-derived stem cells (BMSCs) or by indirectly activating the osteoimmune microenvironment. However, it is still unclear whether the degradation process of HA affects the activation effect of micro/nano-structures. In this study, we first demonstrate that the enhanced osteogenic properties activated by micro/nano-structures could be memorized and continue to play a role even after the removal of micro/nano-structures. More interestingly, this topography-triggered osteogenic memory effect (TTOME) could be regulated through the stimulation time, indicating the importance of the rational maintenance of micro/nano-structures as well as the degradation process of bioceramics. These findings provide a perspective of the design of bone implants with a biodegradable surface topography.


Asunto(s)
Regeneración Ósea , Osteogénesis , Diferenciación Celular , Durapatita/farmacología , Durapatita/química , Huesos
19.
Cancer Biol Med ; 20(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37921408

RESUMEN

OBJECTIVE: Immature vasculature lacking pericyte coverage substantially contributes to tumor growth, drug resistance, and cancer cell dissemination. We previously demonstrated that tumor necrosis factor superfamily 15 (TNFSF15) is a cytokine with important roles in modulating hematopoiesis and vascular homeostasis. The main purpose of this study was to explore whether TNFSF15 might promote freshly isolated myeloid cells to differentiate into CD11b+ cells and further into pericytes. METHODS: A model of Lewis lung cancer was established in mice with red fluorescent bone marrow. After TNFSF15 treatment, CD11b+ myeloid cells and vascular pericytes in the tumors, and the co-localization of pericytes and vascular endothelial cells, were assessed. Additionally, CD11b+ cells were isolated from wild-type mice and treated with TNFSF15 to determine the effects on the differentiation of these cells. RESULTS: We observed elevated percentages of bone marrow-derived CD11b+ myeloid cells and vascular pericytes in TNFSF15-treated tumors, and the latter cells co-localized with vascular endothelial cells. TNFSF15 protected against CD11b+ cell apoptosis and facilitated the differentiation of these cells into pericytes by down-regulating Wnt3a-VEGFR1 and up-regulating CD49e-FN signaling pathways. CONCLUSIONS: TNFSF15 facilitates the production of CD11b+ cells in the bone marrow and promotes the differentiation of these cells into pericytes, which may stabilize the tumor neovasculature.


Asunto(s)
Neoplasias , Pericitos , Animales , Humanos , Ratones , Diferenciación Celular , Células Endoteliales , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Neoplasias/metabolismo , Pericitos/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/farmacología , Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-37995171

RESUMEN

Untreated pain in critically ill patients can lead to immunosuppression and increased metabolic activity, with severe clinical consequences such as tachypnea and delirium. Continuous pain assessment is challenging due to nursing shortages and intensive care unit (ICU) workload. Mechanical ventilation equipment obscures the facial features of many patients in the ICU, making previous facial pain detection methods based on full-face images inapplicable. This paper proposes a facial Action Units (AUs) guided pain assessment network for faces under occlusion. The network consists of an AU-guided (AUG) module, a texture feature extraction (TFE) module, and a pain assessment (PA) module. The AUG module automatically detects AUs in the non-occluded areas of the face. In contrast, the TFE module detects the facial landmarks and crops prior knowledge patches, a random exploration patch, and a global feature patch. Then these patches are fed into two convolutional networks to extract texture features. Afterward, the designed AU guidances and texture features are fused in the PA module to assess the pain state. Extensive validation is conducted on a public dataset and two datasets created in this work. The proposed network architecture achieves superior performance in binary classification, four-class classification, and intensity regression tasks. In addition, we have successfully applied the network to actual data collected in the laboratory environment with excellent results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA