RESUMEN
RNA modification plays an essential function in regulating gene expression and diverse biological processes. RNA modification enzyme methyltransferase-like 3 (METTL3) affects tumor progression by regulating the N6-methyladenosine (m6A) modification in the mRNAs of critical oncogenes or tumor suppressors, but its effect in oral squamous cell carcinoma (OSCC) remains unknown. In this study, we revealed that METTL3 was consistently upregulated in two OSCC cohorts, and high METTL3 expression was associated with poor prognosis. Functionally, cell proliferation, self-renewal, migration, and invasion ability in vitro and tumor growth and metastasis in vivo were decreased after METTL3 knockdown in OSCC cells. In contrast, the opposite results were obtained after METTL3 overexpression. In addition, the results obtained with the Mettl3 genetically modified mouse model validated the essential role of Mettl3 in chemical-induced oral carcinogenesis. In mechanism, methylated RNA immunoprecipitation sequencing (MeRIP-seq), MeRIP-quantitative real-time PCR, and luciferase reporter and mutagenesis assays identified that METTL3 mediates the m6A modification in the 3' UTR of BMI1 mRNA. METTL3 promotes BMI1 translation in OSCC under the cooperation with m6A reader IGF2BP1. Our findings revealed that METTL3 promotes OSCC proliferation and metastasis through BMI1 m6A methylation, suggesting that the METTL3-m6A-BMI1 axis may serve as a prognostic biomarker or therapeutic target in patients with OSCC.
Asunto(s)
Adenosina/análogos & derivados , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Sitios de Unión , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metilación , Metiltransferasas/genética , Ratones , Neoplasias de la Boca/etiología , Neoplasias de la Boca/metabolismo , Unión ProteicaRESUMEN
OBJECTIVE: Endoscopically assisted extracapsular dissection through a single incision along the cephaloauricular furrow has been adapted as a method of access for operating on benign parotid gland tumors. However, no study has compared the immune and stress responses after surgery between the endoscopic procedure and conventional open surgery. METHODS: Through a randomized method, 50 patients with benign parotid gland tumors were assigned to undergo either endoscopically assisted extracapsular dissection or open parotidectomy. The postoperative inflammatory changes and hormonal response in the patients were analyzed at serum level during the preoperative period and at 12, 24, and 72 hr after either surgery. RESULTS: Twenty-three patients received an endoscopic procedure, while 27 underwent open surgery. The size of the incision, amount of intraoperative bleeding, volume of drainage, postoperative pain score, and satisfaction with appearance were all improved in the endoscopic procedure group. Additionally, the serum levels of C-reactive protein, interleukin (IL)-6, IL-10, and cortisol were significantly lower in the endoscopy group in comparison with those in the open surgery group. CONCLUSION: Endoscopically assisted extracapsular dissection on patients with benign parotid gland tumors is associated with lower inflammatory changes and hormone responses than open surgery, thereby reducing perioperative pathophysiological disturbance and enhancing recovery after surgery.
Asunto(s)
Citocinas/metabolismo , Hormonas/metabolismo , Neoplasias de la Parótida , Humanos , Glándula Parótida , Neoplasias de la Parótida/cirugía , Complicaciones Posoperatorias/etiologíaRESUMEN
Enterococcus faecalis (E. faecalis) infection is considered an important etiological factor for the development of persistent apical periodontitis (PAP), but the exact mechanisms of autophagy between E. faecalis and immune cells remain unknown. In this study, we elucidated how E. faecalis lipoteichoic acid (LTA) is associated with macrophages autophagy. We found that E. faecalis LTA apparently activated macrophage autophagy with significant increase of autophagosomes and autophagy relative protein. Meanwhile, we noticed significantly decreasing expression of p-Akt and p-mTOR. However, these effect were absent in macrophages knockdown of Beclin1. In summary, these findings suggested E. faecalis LTA may increased macrophages autophagy via inhibiting PI3K/Akt/mTOR pathway and this process was Beclin1 dependent.
Asunto(s)
Autofagia/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/citología , Ácidos Teicoicos/farmacología , Animales , Beclina-1 , Enterococcus faecalis/patogenicidad , Macrófagos/efectos de los fármacos , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND: Bmi-1 had been found to involve in self renewal of stem cells and tumorigenesis in various malignancies. In this study, we investigated the role of Bmi-1 in the development of salivary adenoid cystic carcinoma (SACC). METHODS: At first, we confirmed that the deregulation of Bmi-1 was a frequent event in SACC; up-regulation of Bmi-1 was correlated with clinical stages, vital status and distant metastasis and associated with reduced overall survival and disease free survival. SACC-LM cells, higher migration and invasion abilities, elevated the expression of Bmi-1 protein, epithelial-mesenchymal transition (EMT) related proteins (Snail, Slug and Vimentin) and cancer stem cells (CSCs) related proteins (ABCG2, Notch, ALDH-1, Oct-4, Nanog and Epcam) compared to the SACC-83 cells (lower migration and invasion abilities). The migration and invasion abilities were inhibited in SACC-LM cells upon Bmi-1 knockdown. Meanwhile, Bmi-1 knockdown resulted in simultaneous loss of stem cell markers and EMT markers in SACC-LM cells. CONCLUSION: Our studies confirm that Bmi-1 deregulation plays an important role in the development of SACC and contributes to the migration and the invasion abilities of SACC, which is involved in EMT and CSCs. GENERAL SIGNIFICANCE: To our knowledge, this is the first study revealing that Bmi-1 deregulation is associated with enhanced migration, invasion and poor prognosis in salivary adenoid cystic carcinoma.
RESUMEN
We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Mitocondrias , Piroptosis , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas Supresoras de Tumor , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Ratones Desnudos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genéticaRESUMEN
PURPOSE: We have been developing a new type of miniscrew to specifically withstand orthodontic torque load. This study aimed to investigate the effect of thread depth and thread pitch on the primary stability of these miniscrews if stressed with torque load. METHODS: Finite element analysis (FEA) was used to evaluate the primary stability of the miniscrews. For thread depth analysis, the thread depth was set to 0.1-0.4â¯mm to construct 7 models. For thread pitch analysis, the thread pitch was set to 0.4-1.0â¯mm to construct another 7 models. A torque load of 6â¯Nmm was applied to the miniscrew, and the other parameters were kept constant for the analyses. Maximum equivalent stress (Max EQV) of cortical bone and maximum displacement of the miniscrews (Max DM) were the indicators for primary stability of the miniscrew in the 14 models. RESULTS: In the thread depth analysis, Max DM increased as the miniscrew thread depth increased, while Max EQV was smallest in model 3 (thread depthâ¯= 0.2, Max EQVâ¯= 8.91â¯MPa). In the pitch analysis, with an increase of the thread pitch, Max DM generally exhibited a trend to increase, while Max EQV of cortical bone showed a general trend to decrease. CONCLUSION: Considering the data of Max DM and Max EQV, the most appropriate thread depth and thread pitch of the miniscrews in our model was 0.2 and 0.7â¯mm, respectively. This knowledge may effectively improve the primary stability of newly developed miniscrews.
Asunto(s)
Tornillos Óseos , Métodos de Anclaje en Ortodoncia , Torque , Estrés Mecánico , Análisis de Elementos FinitosRESUMEN
Abnormal expression of long-noncoding RNA is involved in the tumorigenesis and progression of various cancers, but the potential molecular regulatory mechanisms are unclear. Microbial flora and chronic inflammation, such as periodontitis, which is associated with oral cancer, affect the occurrence and progression of tumors. Accordingly, we stimulated the tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SCC15 with a low concentration of lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g) for 6 days and then performed LncRNA sequencing on P.g-LPS-treated CAL27 cells and untreated CAL27 cells. LTSCCAT was upregulated in P.g-LPS-treated CAL27 cells compared with untreated CAL27 cells. LTSCCAT induced epithelial-mesenchymal transition and promoted the invasion and metastasis of TSCC in vitro and in vivo. LncRNA LTSCCAT was upregulated in TSCC patients with periodontitis and was correlated with metastasis and poor prognosis. We predicted through an online database and confirmed by dual-luciferase reporter assays that LTSCCAT is a competitive endogenous RNA for the regulation of miR-103a-2-5p. Another dual-luciferase reporter assay confirmed that miR-103a-2-5p has a binding site at the 3'-UTR of the histone methylation transferase SMYD3 and inhibits its translation. Chromatin immunoprecipitation experiments demonstrated that SMYD3 binds directly to the promoter region of TWIST1 and promotes its transcription, which is related to H3K4 trimethylation. The effect of pcDNA/LTSCCAT on expression was attenuated by miR-103a-2-5p mimics. The RF and SVM classifier predicts that LTSCCAT can bind to SMYD3, whereas the RNA immunoprecipitation (RIP) assay confirms that it cannot. In addition, we predicted the combination of LTSCCAT and SMYD3 through software, but the RIP assay confirmed that LTSCCAT could not be combined with SMYD3. For the first time, we showed that periodontitis promotes the invasion and metastasis of TSCC and clarified the molecular mechanism of LTSCCAT to promote invasion and metastasis of TSCC, providing a potential therapeutic target for clinical treatment of TSCC.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de la Lengua/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Pronóstico , ARN Largo no Codificante/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología , Transfección , Proteína 1 Relacionada con Twist/genética , Regulación hacia ArribaRESUMEN
Aim: To evaluate the biological function of titanium implants coated with cell-derived mineralized extracellular matrix, which mimics a bony microenvironment. Materials & methods: A biomimetic titanium implant was fabricated primarily by modifying the titanium surface with TiO2 nanotubes or sand-blasted, acid-etched topography, then was coated with mineralized extracellular matrix constructed by culturing bone marrow mesenchymal stromal cells. The osteogenic ability of biomimetic titanium surface in vitro and in vivo were evaluated. Results:In vitro and in vivo studies revealed that the biomimetic titanium implant enhanced and accelerated osteogenesis of bone marrow stromal cells by increasing cell proliferation and calcium deposition. Conclusion: By combining surface topography modification with biological coating, the results provided a valuable method to produce biomimetic titanium implants with excellent osteogenic ability.
Asunto(s)
Osteogénesis , Titanio , Biomimética , Diferenciación Celular , Proliferación Celular , Materiales Biocompatibles Revestidos , Matriz Extracelular , Propiedades de SuperficieRESUMEN
OBJECTIVE: The aim of the present study was to investigate the biological roles and underlying mechanism of the long non-coding RNA maternally expressed gene 3 (MEG3) on osteogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS: The expression levels of MEG3, microRNA-543 (miR-543), osterix, osteopontin, osteocalcin and runt-related transcription factor 2 (RUNX2) were measured by quantitative real-time PCR (qRT-PCR). Alkaline phosphatase (ALP) activity assay and alizarin red S staining (ARS) were used to measure the impacts exerted by MEG3, miR-543 on osteogenic differentiation. Cell proliferation was measured by MTT assay. In addition, the targeted relationships between miR-543, MEG3, and Smad ubiquitin regulatory factor 1 (SMURF1) were assessed through dual luciferase reporter assay. RESULTS: During osteogenic induction, the expression of MEG3 was gradually reduced, whereas the expression of miR-543, osterix, osteopontin, osteocalcin and RUNX2 were gradually increased. Functional analysis implied that MEG3 overexpression or miR-543 inhibition reduced the cell proliferation, ALP activity, ARS levels, and decreased the expression of osteoblast-related proteins. Moreover, MEG3 promoted SMURF1 expression by directly targeting miR-543 as a competing endogenous RNA. Furthermore, overexpression of miR-543 or silencing SMURF1 could reverse the inhibitory effects of MEG3 on the osteogenic differentiation of hDPSCs. CONCLUSIONS: In conclusion, our study revealed that overexpression of MEG3 inhibited hDPSCs osteogenic differentiation via miR-543/SMURF1/RUNX2 regulatory network, which may contribute to the functional regulation and clinical applications of hDPSCs.
Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , MicroARNs/genética , Osteogénesis , ARN Largo no Codificante/genética , Células Madre/citología , Ubiquitina-Proteína Ligasas/genética , Diferenciación Celular , Células Cultivadas , Pulpa Dental/citología , Redes Reguladoras de Genes , Humanos , Osteocalcina/genética , Osteopontina/genética , Factor de Transcripción Sp7/genéticaRESUMEN
PURPOSE: Oral squamous cell carcinoma (OSCC) is a common malignancy of the oral cavity. As the survival rate of OSCC patients is low, it is crucial to explore new markers and therapeutic targets for early diagnosis of the disease. A high level of actinin alpha 1 (ACTN1) in patients could serve as an independent prognostic factor of acute myeloid leukemia. However, the role of ACTN1 in OSCC remains unclear. In the present study, we aimed to investigate the role of ACTN1 in OSCC. METHODS: ACTN1 protein levels in tissues were determined by immunohistochemical (IHC) staining. The correlation of ACTN1 expression with clinicopathological features and prognosis was analyzed. Univariate and multivariate analyses were performed. The effect of ACTN1 knockdown on cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and the cell cycle was evaluated using Western blotting, Cell Counting Kit8 (CCK8) assays, flow cytometry analysis, transwell assays, wound-healing assays, and nude mouse models of subcutaneous xenograft and pulmonary metastasis. RESULTS: Based on the total score of ACTN1 IHC staining analysis, ACTN1 expression was found to be low in 10 normal mucosal tissues, 48 normal mucosal tissues adjacent to OSCC, and 19 OSCC tissues, but high in 29 OSCC tissues. ACTN1 protein levels were significantly associated with the clinical stage and node metastasis, and a high ACTN1 protein level indicated poor prognosis. Moreover, ACTN1 expression was an independent predictor of poor prognosis of OSCC. Using in vitro assays, we found that ACTN1 knockdown could induce cell cycle arrest, promote apoptosis, and inhibit EMT and cell proliferation, migration, and invasion in the OSCC cell lines, SCC-15 and HSC-3. Moreover, ACTN1 knockdown inhibited subcutaneous tumor growth and pulmonary metastasis in vivo. CONCLUSION: ACTN1 levels were significantly associated with the clinical stage and node metastasis, and a high ACTN1 protein level indicated poor prognosis. Moreover, ACTN1 knockdown could suppress cell proliferation and metastasis of OSCC. Our results suggested that ACTN1 may serve as a diagnostic and prognostic marker of OSCC.
Asunto(s)
Actinina/metabolismo , Proliferación Celular , Silenciador del Gen , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Actinina/análisis , Actinina/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/patología , Metástasis de la Neoplasia , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Adulto JovenRESUMEN
The glycolytic enzyme hexokinase (HK2), which is aberrantly expressed in various types of tumours, is associated with metastasis. However, its role in the progression and metastasis of tongue squamous cell carcinoma (TSCC) remains unclear. The results of our study showed that HK2 expression is often deregulated in TSCC patients. Increased HK2 expression was associated with tumour stage, clinical stage, lymph node metastasis, but not pathological grade, and reduced overall survival. Microarray and western blotting analyses revealed increases in HK2 expression in TSCC cells with higher metastatic potential. The following effects were observed with HK2 knockdown: inhibition of cell migration and invasion; reduced SOD2 activity and intracellular H2O2 levels; suppression of pERK1/2, Slug and Vimentin expression; and inhibition of tumour growth and lung metastasis in vivo. Conversely, HK2 overexpression promoted cell migration and invasion, increased SOD2 activity and intracellular H2O2, and enhanced expression of pERK1/2, Slug and Vimentin. Thus, our results demonstrate that deregulation of HK2 expression has an important function in the progression of TSCC and may serve as a biomarker of its metastatic potential in TSCC patients. HK2 enhances the metastatic potential of TSCC by stimulating the SOD2-H2O2 pathway.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Hexoquinasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxido Dismutasa/metabolismo , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Hexoquinasa/genética , Humanos , Masculino , Redes y Vías Metabólicas , Ratones , Metástasis de la Neoplasia , Estudios Retrospectivos , Transducción de Señal , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/mortalidadRESUMEN
Pyruvate kinase M2 (PKM2) has been verified to correlate with the prognosis of many types of cancer. However, its role in the development and metastasis of tongue squamous cell carcinoma (TSCC) remains unclear. The immunohistochemistry (IHC) results confirmed that PKM2 is overexpressed in patients with TSCC. PKM2 up-regulation was related to lymph node metastasis and associated with reduced overall survival. According to the microarray analysis and Western blots, PKM2 expression was up-regulated in TSCC cells with enhanced metastatic potential. PKM2 knockdown inhibited cell migration and invasion, reduced SOD2 (manganese superoxide dismutase) activity and the intracellular H2O2 level, and inhibited tumour growth and lung metastasis in vivo. PKM2 overexpression promoted cell migration and invasion, and increased SOD2 activity and the intracellular H2O2 level. Moreover, miR-138 directly targeted PKM2 and inhibited PKM2 expression. Thus, PKM2 deregulation plays an important role in TSCC and may serve as a biomarker of metastatic potential or as a therapeutic target in patients with TSCC. PKM2, a miR-138 target gene, enhances the metastatic potential of TSCC through the SOD2-H2O2 pathway.
RESUMEN
Chemoresistance is often associated with other clinical characteristics such as enhanced migratory/invasive potential. However, the correlation and underlying molecular mechanisms remain unclear. The aim of this study was to elucidate the function of the miR-222-ABCG2 pathway in the correlation between cisplatin (DDP) resistance and enhanced cell migration/invasion in tongue squamous cell carcinoma (TSCC). Using TSCC cell lines and primary cultures from TSCC cases, we first confirmed the correlation among DDP resistance (measured by IC50 values and ABCG2/ERCC1 expression), migratory/invasive potential (assessed by migration/invasion assays) and miR-222 expression. In TSCC cells, siRNA-mediated ABCG2 knockdown led to enhanced DDP responsiveness and reduced migratory/invasive potential, whereas ABCG2 overexpression induced DDP resistance and enhanced cell migration/invasion. Luciferase assays revealed that ABCG2 is a direct target of miR-222. In addition to reducing cell migration/invasion, functional analyses in TSCC cells indicated that miR-222 can reduce expression of the ABCG2 gene and enhance DDP responsiveness. However, co-transfection with ABCG2 cDNA restored both DDP resistance and migration/invasion. Moreover, miR-222 mimics and ABCG2 siRNA inhibited tumor growth and lung metastasis in vivo. Thus, our results verified that DDP resistance is correlated with enhanced migratory/invasive potential in TSCC. ABCG2 is a direct target of miR-222,and deregulation of the miR-222-ABCG2 regulatory module in TSCC contributes to both DDP resistance and enhanced migratory/invasive potential.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias Pulmonares/prevención & control , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Lengua/tratamiento farmacológico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Antineoplásicos/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundario , Línea Celular Tumoral , Cisplatino/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/secundario , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello , Factores de Tiempo , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Transfección , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Bmi1 (B-cell-specific Moloney murine leukemia virus insertion site 1) had been found to involve in self -renewal of stem cells and tumorigenesis in various malignancies. The purpose of this study is to evaluate the role of Bmi1 in the development of tongue squamous cell carcinoma (TSCC) and its functional effect on the migration and invasion of TSCC. Initially, immunohistochemistry revealed that Bmi1 overexpression was a common event in premalignant dysplasia, primary TSCC, and lymph node metastases and was associated with a poor prognosis. A significant correlation between Bmi1 and SOD2 (manganese superoxide dismutase) expression was observed. Side population (SP) cells were used as cancer stem-like cells and further assessed by sphere and colony formation assays, and the expression of stem cell markers. TSCC cells with higher migration and invasion ability (UM1 cell lines) showed a higher proportion of SP cells and Bmi1 expression than TSCC cells with lower migration and invasion ability (UM2 cell lines). Knockdown of Bmi1 in UM1 or SP cells inhibited migration and invasion and decreased the sphere and colony formation, and the expression of stem cell markers and SOD2. Direct binding of C-myc to the Bmi1 promoter was demonstrated by chromatin immunoprecipitation and luciferase assays. Moreover, C-myc knockdown in SP cells inhibited their migration and invasion and decreased the expression of Bmi1 and SOD2. Our results indicate that the deregulation of Bmi1 expression is a frequent event during the progression of TSCC and may have a prognostic value for patients with this disease. The Bmi1-mediated migration and invasion of TSCC is related to cancer stem-like cells and involves the C-myc-Bmi1-SOD2 pathway.
Asunto(s)
Carcinoma de Células Escamosas/genética , Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Invasividad Neoplásica/fisiopatología , Complejo Represivo Polycomb 1/metabolismo , Neoplasias de la Lengua/genética , Análisis de Varianza , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Inmunoprecipitación de Cromatina , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Luciferasas , Complejo Represivo Polycomb 1/genética , Pronóstico , Neoplasias de la Lengua/metabolismo , Ensayo de Tumor de Célula MadreRESUMEN
Our previous studies revealed that manganese superoxide dismutase (SOD2) contributes to the migration and invasion of tongue squamous cell carcinoma (TSCC). The purpose of the current study was to further clarify the mechanisms of SOD2 in the migration and invasion of TSCC. Side population (SP) cells were used as cancer stem-like cells and further assessed by sphere and colony formation assays, and the expression of stem cell markers (Bmi1, Nanog and ABCG2). We found that UM1 cells (TSCC cells with increased SOD2 expression, migration and invasion abilities) possessed a higher proportion of SP cells, sphere and colony formation, and expressed a higher level of stem cell markers compared to UM2 cells (reduced SOD2 expression, migration and invasion abilities). SOD2 expression as well as migration and invasion abilities were enhanced in SP cells compared to non-SP cells. Knockdown of SOD2 in UM1 cells or SP cells inhibited the migration and invasion abilities, reduced sphere and colony formation, and the expression of stem cell markers. Direct binding of the C-myc protein to the SOD2 promoter was demonstrated by chromatin immunoprecipitation and luciferase assays. Knockdown of C-myc in UM1 cells inhibited SOD2 expression as well as migration and invasion abilities. Our results indicate that cancer stem-like cells play an important role in the migration and invasion of TSCC. SOD2 is a direct target gene of C-myc and C-myc-SOD2-mediated migration and invasion of TSCC involve cancer stem-like cells.