Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(9): 11631-11641, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36852882

RESUMEN

Composition optimization, structural design, and introduction of external magnetic fields into the catalytic process can remarkably improve the oxygen evolution reaction (OER) performance of a catalyst. NiFe2O4@(Ni, Fe)S/P materials with a heterogeneous core-shell structure were prepared by the sulfide/phosphorus method based on spinel-structured NiFe2O4 nanomicrospheres. After the sulfide/phosphorus treatment, not only the intrinsic activity of the material and the active surface area were increased but also the charge transfer resistance was reduced due to the internal electric field. The overpotential of NiFe2O4@(Ni, Fe)P at 10 mA cm-2 (iR correction), Tafel slope, and charge transfer resistance were 261 mV, 42 mV dec-1, and 3.163 Ω, respectively. With an alternating magnetic field, the overpotential of NiFe2O4@(Ni, Fe)P at 10 mA cm-2 (without iR correction) declined by 45.5% from 323 mV (0 mT) to 176 mV (4.320 mT). Such enhancement of performance is primarily accounted for the enrichment of the reactive ion OH- on the electrode surface induced by the inductive electric potential derived from the Faraday induction effect of the AMF. This condition increased the electrode potential and thus the charge transfer rate on the one hand and weakened the diffusion of the active substance from the electrolyte to the electrode surface on the other hand. The OER process was dominantly controlled by the charge transfer process under low current conditions. A fast charge transfer rate boosted the OER performance of the catalyst. At high currents, diffusion exerted a significant effect on the OER process and low OH- diffusion rates would lead to a decrease in the OER performance of the catalyst.

2.
ACS Appl Mater Interfaces ; 14(30): 34627-34636, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862430

RESUMEN

Renewable electricity from splitting water to produce hydrogen is a favorable technology to achieve carbon neutrality, but slow anodic oxygen evolution reaction (OER) kinetics limits its large-scale commercialization. Electron spin polarization and increasing the reaction temperature are considered as potential ways to promote alkaline OER. Here, it is reported that in the alkaline OER process under an AC magnetic field, a ferromagnetic ordered electrocatalyst can simultaneously act as a heater and a spin polarizer to achieve significant OER enhancement at a low current density. Moreover, its effect obviously precedes antiferromagnetic, ferrimagnetic, and diamagnetic electrocatalysts. In particular, the noncorrected overpotential of the ferromagnetic electrocatalyst Co at 10 mA cm-2 is reduced by a maximum of 36.6% to 243 mV at 4.320 mT. It is found that the magnetic heating effect is immediate, and more importantly, it is localized and hardly affects the temperature of the entire electrolytic cell. In addition, the spin pinning effect established on the ferromagnetic/paramagnetic interface generated during the reconstruction of the ferromagnetic electrocatalyst expands the ferromagnetic order of the paramagnetic layer. Also, the introduction of an external magnetic field further increases the orderly arrangement of spins, thereby promoting OER. This work provides a reference for the design of high-performance OER electrocatalysts under a magnetic field.

3.
ACS Appl Mater Interfaces ; 12(41): 45987-45996, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32946212

RESUMEN

As an ideal hydrogen production route, electrolyzed water still faces the challenges of high cost of noble-metal electrocatalysts and low performance of non-noble-metal catalysts in scalable applications. Recently, introduction of external fields (such as magnetic fields, light fields, etc.) to improve the electrocatalytic water splitting performance of non-noble-metal catalysts has attracted great attention due to their simplicity. Here, a simple method for preparing magnetic superstructure (NiFe2O4@MOF-74) is described, and the hydrogen evolution reaction (HER) behavior of its carbonized derivative, a ferromagnetic superstructure, is revealed in a wide range of applied voltage under an AC magnetic field. The overpotential (@10 mA cm-2) required for the HER of the obtained ferromagnetic superstructure in 1 M KOH was reduced by 31 mV (7.7%) when a much small AC magnetic field (only 2.3 mT) is applied. Surprisingly, the promotion effect of the AC magnetic field is not monotonically increasing with the increase of the applied voltage or the strength of AC magnetic field, but increasing first, then weakening. This unusual behavior is believed to be mainly caused by the enhanced induced electromotive force and the additional energy by the applied AC magnetic field. This discovery provides a new idea for adjusting the performance of electrocatalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA