Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 51(D1): D46-D56, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399495

RESUMEN

Non-coding RNAs (ncRNAs) are emerging as key regulators of various biological processes. Although thousands of ncRNAs have been discovered, the transcriptional mechanisms and networks of the majority of ncRNAs have not been fully investigated. In this study, we updated ChIPBase to version 3.0 (https://rnasysu.com/chipbase3/) to provide the most comprehensive transcriptional regulation atlas of ncRNAs and protein-coding genes (PCGs). ChIPBase has identified ∼151 187 000 regulatory relationships between ∼171 600 genes and ∼3000 regulators by analyzing ∼55 000 ChIP-seq datasets, which represent a 30-fold expansion. Moreover, we de novo identified ∼29 000 motif matrices of transcription factors. In addition, we constructed a novel 'Enhancer' module to predict ∼1 837 200 regulation regions functioning as poised, active or super enhancers under ∼1300 conditions. Importantly, we constructed exhaustive coexpression maps between regulators and their target genes by integrating expression profiles of ∼65 000 normal and ∼15 000 tumor samples. We built a 'Disease' module to obtain an atlas of the disease-associated variations in the regulation regions of genes. We also constructed an 'EpiInter' module to explore potential interactions between epitranscriptome and epigenome. Finally, we designed 'Network' module to provide extensive and gene-centred regulatory networks. ChIPBase will serve as a useful resource to facilitate integrative explorations and expand our understanding of transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica , ARN no Traducido , ARN no Traducido/genética , ARN no Traducido/metabolismo , Factores de Transcripción/metabolismo , Redes Reguladoras de Genes
2.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33313674

RESUMEN

Although long noncoding RNAs (lncRNAs) have significant tissue specificity, their expression and variability in single cells remain unclear. Here, we developed ColorCells (http://rna.sysu.edu.cn/colorcells/), a resource for comparative analysis of lncRNAs expression, classification and functions in single-cell RNA-Seq data. ColorCells was applied to 167 913 publicly available scRNA-Seq datasets from six species, and identified a batch of cell-specific lncRNAs. These lncRNAs show surprising levels of expression variability between different cell clusters, and has the comparable cell classification ability as known marker genes. Cell-specific lncRNAs have been identified and further validated by in vitro experiments. We found that lncRNAs are typically co-expressed with the mRNAs in the same cell cluster, which can be used to uncover lncRNAs' functions. Our study emphasizes the need to uncover lncRNAs in all cell types and shows the power of lncRNAs as novel marker genes at single cell resolution.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica , ARN Largo no Codificante , Análisis de la Célula Individual , Programas Informáticos , Animales , Humanos , Anotación de Secuencia Molecular , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética
3.
Nat Biotechnol ; 42(1): 119-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37037902

RESUMEN

A kink-turn (K-turn) is a three-dimensional RNA structure that exists in all three primary phylogenetic domains. In this study, we developed the RIP-PEN-seq method to identify the full-length sequences of RNAs bound by the K-turn binding protein 15.5K and discovered a previously uncharacterized class of RNAs with backward K-turn motifs (bktRNAs) in humans and mice. All bktRNAs share two consensus sequence motifs at their fixed terminal position and have complex folding properties, expression and evolution patterns. We found that a highly conserved bktRNA1 guides the methyltransferase fibrillarin to install RNA methylation of U12 small nuclear RNA in humans. Depletion of bktRNA1 causes global splicing dysregulation of U12-type introns by impairing the recruitment of ZCRB1 to the minor spliceosome. Most bktRNAs regulate the splicing of local introns by interacting with the 15.5K protein. Taken together, our findings characterize a class of small RNAs and uncover another layer of gene expression regulation that involves crosstalk among bktRNAs, RNA splicing and RNA methylation.


Asunto(s)
Empalme del ARN , ARN , Humanos , Animales , Ratones , Filogenia , Empalme del ARN/genética , ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Intrones/genética
4.
Nat Commun ; 15(1): 2425, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499544

RESUMEN

Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas Nucleares , Proteínas de Ciclo Celular
5.
Sci China Life Sci ; 66(4): 800-818, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36323972

RESUMEN

2'-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2'-hydroxylated (2'-OH) nucleosides, coupled with sequencing (Nm-REP-seq). We revealed several novel classes of Nm-containing ncRNAs as well as mRNAs in humans, mice, and drosophila. We found that some novel Nm sites are present at fixed positions in different tRNAs and are potential substrates of fibrillarin (FBL) methyltransferase mediated by snoRNAs. Importantly, we discovered, for the first time, that Nm located at the 3'-end of various types of ncRNAs and fragments derived from them. Our approach precisely redefines the genome-wide distribution of Nm and provides new technologies for functional studies of Nm-mediated gene regulation.


Asunto(s)
Exorribonucleasas , ARN no Traducido , Humanos , Animales , Ratones , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Metilación , ARN no Traducido/genética , Secuencia de Bases , ARN Nucleolar Pequeño/metabolismo , ARN Mensajero/genética
6.
Front Pharmacol ; 8: 421, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713273

RESUMEN

Cisplatin (DDP) is currently one of the most commonly used chemotherapeutic drugs for treating ovarian and lung cancer. However, resistance to cisplatin is common and it often leads to therapy failure. In addition, the precise mechanism of cisplatin resistance is still in its infancy. In this study, we demonstrated that the oxidative pentose phosphate pathway enzyme 6-phosphogluconate dehydrogenase (6PGD) promotes cisplatin resistance. We showed that cisplatin-resistant cancer cells (C13∗ and A549DDP), had higher levels of 6PGD compared to their cisplatin-sensitive counterparts (OV2008 and A549). Furthermore, ovarian and lung cancer patients with higher 6PGD levels have worse survival outcomes relative to patients with lower 6PGD expression. Interestingly, we found that the upregulation of 6PGD in cisplatin-resistant cells was due to the decreased expression of miR-206 and miR-613, which we found to target this enzyme. We further demonstrate that suppressing 6PGD using shRNA, inhibitor or miR-206/miR-613, either as single agents or in combination, could sensitize cisplatin-resistant cancer cells to cisplatin treatment and thereby improving the therapeutic efficacy of cisplatin. Taken together, our results suggest that 6PGD serves as a novel potential target to overcome cisplatin resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA