Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(20): 25058-25065, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162360

RESUMEN

Gallium nitride (GaN) has been considered one of the most promising materials for the next-generation power and radio-frequency electronic devices, as they can operate at higher voltage, higher frequency, and higher temperature, compared with their silicon (Si) counterparts. However, the fresh GaN surface is susceptible to the natural oxidation composed of Ga2O3, Ga2O, and other intermediate oxidation states. Moreover, the oxidized GaN surface no longer features the distinct atomic step-terrace morphology, resulting in a degraded interface when gate or passivation dielectrics are deposited without appropriate pretreatment. It is responsible for the degraded performance of GaN-based devices such as current collapse and threshold voltage instability. In this study, the proposed high-temperature (500 °C) remote plasma pretreatments (RPPs) can play a significant role in addressing the issue of the deteriorated GaN surface exposed to air. Atomic step-terrace morphology was recovered after 500 °C-RPP due to the removal of oxides and suboxides. First-principles calculations verified that Ga2O at the GaN surface leads to interface states at ∼2.9 eV (EC-E ∼ 0.4 eV) in the bandgap, which is consistent with the increase of interface states at the EC-E range of 0.4-0.9 eV measured through constant-capacitance deep-level transient spectroscopy. Meanwhile, deep interface states and surface-related current collapse are well suppressed in GaN metal-insulator-semiconductor devices. These improved properties by 500 °C-RPP are generalizable to a broader range, including pre-gate and pre-passivation treatment, of which a decent surface/interface is desirable for high-performance GaN-based devices.

2.
Micromachines (Basel) ; 13(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35630215

RESUMEN

In this study, a dedicated dynamic measurement system was used to investigate the transient capacitance and recovery process of AlGaN/GaN lateral Schottky barrier diodes (SBDs). With the consideration of acceptor traps in the C-doped buffer, the C-V characteristics and transient capacitance were measured and analyzed, and the results were simulated and explained by Silvaco TCAD (technology computer aided design). The ionization of acceptor traps and the change of electric potential were monitored in transient simulation to investigate the origin of the capacitance collapse in the SBD. The results suggest the significant impact of traps in the GaN buffer layer on the capacitance collapse of the device, and the secondary capture effect on the variation of acceptor ionization. Based on the study of transient capacitance of SBD, this work could be extended to the Miller capacitance in high electron mobility transistor (HEMT) devices. Moreover, the report on the stability of capacitance is essential for GaN devices, and could be further extended to other aspects of device research.

3.
Micromachines (Basel) ; 12(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832708

RESUMEN

This work investigates the transient characteristics of an AlGaN/GaN lateral Schottky barrier diode (SBD) and its recovery process with a dedicated dynamic measurement system. Both static and dynamic characteristics were measured, analyzed with the consideration of acceptor/donor traps in the C-doped buffer and GaN channel, and verified by Silvaco TCAD (technology computer aided design) simulations. The energy band, electric field, and electron concentration were monitored in the transient simulation to study the origin of the current collapse in the SBD. Using the verified model, the impact of carbon doping concentration in the buffer and the thickness of the unintentionally doped (UID) GaN channel in the transient behavior was estimated. Several observations were revealed. Firstly, the traps in the GaN channel and buffer layer have a significant impact on the current collapse of the device. A severe deterioration of current collapse can be observed in the SBDs with increasing density of acceptor-like traps. Secondly, the current collapse increases with the thinner UID GaN channel layer. This well-performed simulation model shows promise to be utilized for the dynamic performance optimization of GaN lateral devices.

4.
ACS Appl Mater Interfaces ; 13(6): 7725-7734, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529524

RESUMEN

The formation mechanism of the partially crystallized ultrathin layer at the interface between GaN and SiNx grown by low-pressure chemical vapor deposition was analyzed based on the chemical components of reactants and products detected by high-resolution sputter depth profile analysis by X-ray photoelectron spectroscopy. A reasonable mass action equation for the formation of Si2N2O was proposed from the feasibility analysis of the Gibbs free energy changes of the reaction. The high-energy-activated Ga2O on the surface likely assists in the synthesis of the crystallized components. A well-defined 1ML θ-Ga2O3 transition interface was inserted into Si2N2O/GaN pure interface supercell slabs to edit the unsaturated state of the bonds. Low-density states can be achieved when the effective charges of the unsaturated atoms are adjusted to a certain interval.

5.
Nanomaterials (Basel) ; 10(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244713

RESUMEN

The optimization of mesa etch for a quasi-vertical gallium nitride (GaN) Schottky barrier diode (SBD) by inductively coupled plasma (ICP) etching was comprehensively investigated in this work, including selection of the etching mask, ICP power, radio frequency (RF) power, ratio of mixed gas, flow rate, and chamber pressure, etc. In particular, the microtrench at the bottom corner of the mesa sidewall was eliminated by a combination of ICP dry etching and tetramethylammonium hydroxide (TMAH) wet treatment. Finally, a highly anisotropic profile of the mesa sidewall was realized by using the optimized etch recipe, and a quasi-vertical GaN SBD was demonstrated, achieving a low reverse current density of 10-8 A/cm2 at -10 V.

6.
ACS Appl Mater Interfaces ; 10(25): 21721-21729, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29863840

RESUMEN

Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state ELP ( EC - ET = 60 meV) featuring a very small capture cross section of 1.5 × 10-20 cm-2 was detected at 70 K at the LPCVD-SiN x/GaN interface. A partially crystallized Si2N2O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si2N2O/GaN slabs, it was confirmed that the NCB state ELP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si2N2O interfacial layer might also give rise to the very small capture cross section of the ELP owing to the smaller lattice mismatch between the Si2N2O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA