Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecotoxicol Environ Saf ; 263: 115375, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591129

RESUMEN

Aeromonas hydrophila is a conditional pathogen impacting public hygiene and safety. Hemolysin is a virulence factor of Aeromonas hydrophila that causes erythrocyte hemolysis, yet its transcriptional response to Cyprinus rubrofuscus remains unknown. Our investigation confirmed the hemolysis of hemolysin from A. hydrophila. Serum enzyme activity was evaluated weekly after C. rubrofuscus were immunized with hemolysin Ahh1. The results showed that the hemolysin enhances the serum superoxide dismutase (SOD), lysozyme (LZM), and catalase (CAT) activity, which reached a maximum on day 14. To elucidate the molecular interaction between hemolysin from A. hydrophila and the host, we performed transcriptome sequencing on the spleen of C. rubrofuscus 14 days post hemolysin infection. The total number of clean reads was 41.37 Gb, resulting in 79,832 unigenes with an N50 length of 1863 bp. There were 1982 significantly differentially expressed genes (DEGs), including 1083 upregulated genes and 899 downregulated genes. Transcript levels of the genes, such as LA6BL, CD2, and NLRC5, were significantly downregulated, while those of IL11, IL1R2, and IL8 were dramatically upregulated. The DEGs were mainly enriched in the immune disease, viral protein interaction with cytokine and cytokine receptor, and toll-like receptor pathways, suggesting that hemolysin stimulation can activate the transcriptional responses. RT-qPCR experiments results of seven genes, IL-8, STAT2, CTSK, PRF1, CXCL9, TLR5, and SACS, showed that their expression was highly concordant with RNA-seq data. We clarified for the first time the key genes and signaling pathways response to hemolysin from A. hydrophila, which offers strategies for treating and preventing diseases.


Asunto(s)
Carpas , Bazo , Animales , Aeromonas hydrophila , Proteínas Hemolisinas/genética , Hemólisis
2.
Environ Toxicol ; 38(9): 2204-2218, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37300850

RESUMEN

Ionic liquids (ILs) are thought to have negative effects on human health. Researchers have explored the effects of ILs on zebrafish development during the early stages, but the intergenerational toxicity of ILs on zebrafish development has rarely been reported. Herein, parental zebrafish were exposed to different concentrations (0, 12.5, 25, and 50 mg/L) of [Cn mim]NO3 (n = 2, 4, 6) for 1 week. Subsequently, the F1 offspring were cultured in clean water for 96 h. [Cn mim]NO3 (n = 2, 4, 6) exposure inhibited spermatogenesis and oogenesis in F0 adults, even causing obvious lacunae in the testis and atretic follicle oocytes in ovary. After parental exposure to [Cn mim]NO3 (n = 2, 4, 6), the body length and locomotor behavior were measured in F1 larvae at 96 hours post-fertilization (hpf). The results showed that the higher the concentration of [Cn mim]NO3 (n = 2, 4, 6), the shorter the body length and swimming distance, and the longer the immobility time. Besides, a longer alkyl chain length of [Cn mim]NO3 had a more negative effect on body length and locomotor behavior. RNA-seq analysis revealed several downregulated differentially expressed genes (DEGs)-grin1b, prss1, gria3a, and gria4a-enriched in neurodevelopment-related pathways, particularly the pathway for neuroactive ligand-receptor interaction. Moreover, several upregulated DEGs, namely col1a1a, col1a1b, and acta2, were mainly associated with skeletal development. Expression of DEGs was tested by RT-qPCR, and the outcomes were consistent with those obtained from RNA-Seq. We provide evidence showing the effects of parental exposure to ILs on the regulation of nervous and skeletal development in F1 offspring, demonstrating intergenerational effects.


Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Humanos , Pez Cebra/metabolismo , Líquidos Iónicos/toxicidad , Testículo , Espermatogénesis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Food Microbiol ; 98: 103762, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33875200

RESUMEN

Harmful levels of biogenic amines (BAs) are frequently identified in sufu. The microorganisms and mechanisms responsible for BA production in sufu, however, are not well documented. In this study, sufu samples were randomly obtained from various regions of China. Putrescine, tyramine, and histamine were quantitated as the most abundant BAs. According to the metagenome sequencing, the abundances and diversities of genes encoding the critical enzymes in BA production were acquired. The results showed that genes encoding arginine-, ornithine-, tryptophan-, and histidine decarboxylases were the predominant amino acid decarboxylase genes. Furthermore, 34 metagenome-assembled genomes (MAGs) were generated, of which 23 encoded at least one gene involved in BA production. Genetic analysis of MAGs indicated genera affiliated with Enterococcus, Lactobacillus-related, and Lactococcus were the major histamine-synthesizing bacteria, and tyrosine may be utilized by Bacillus, Chryseobacterium, Kurthia, Lysinibacillus, Macrococcus, and Streptococcus to product tyramine. The critical species involved in two putrescine-producing pathways were also explored. In the ornithine decarboxylase pathway, Lactobacillus-related and Veillonella were predicted to be the main performers, whereas Sphingobacterium and unclassified Flavobacteriaceae were the dominant executors in the agmatine deiminase pathway. The present study not only explained the BAs formation mechanism in sufu but also identified specific bacteria used to control BAs in fermented soybean products.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Aminas Biogénicas/metabolismo , Alimentos de Soja/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Aminas Biogénicas/análisis , China , Fermentación , Histamina/análisis , Histamina/metabolismo , Metagenoma , Metagenómica , Putrescina/análisis , Putrescina/metabolismo , Alimentos de Soja/análisis , Glycine max/metabolismo , Glycine max/microbiología , Tiramina/análisis , Tiramina/metabolismo
4.
Int J Biol Macromol ; 259(Pt 2): 129205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185299

RESUMEN

The use of host to secrete several hemicellulase is a cost-effective way for hemicellulose degradation. In this study, the xylose utilization gene xylAB of Escherichia coli BL21 was knocked out, and the xylanase (N20Xyl), ß-xylosidase (Xys), and feruloyl esterase (FaeLam) were co-expressed in this strain. By measuring the content of reducing sugars generated by enzymatic hydrolysis of wheat bran in the fermentation supernatant, the order of the three enzymes was screened to obtain the optimal recombinant strain of E. coli BL21/∆xylAB/pDIII-2. Subsequently, fermentation conditions including culture medium, inducer concentration, induction timing, metal ions, and glycine concentration were optimized. Then, different concentrations of wheat bran and xylan were added to the fermentation medium for degradation. The results showed that the extracellular reducing sugars content reached the highest value of 33.70 ± 0.46 g/L when 50 g/L xylan was added. Besides, the scavenging rates of hydroxyl radical by the fermentation supernatant was 81.0 ± 1.41 %, and the total antioxidant capacity reached 2.289 ± 0.55. Furthermore, it showed the growth promotion effect on different lactic acid bacteria. These results provided a basis for constructing E. coli strain to efficiently degrade hemicellulose, and the strain obtained has great potential application to transform hemicellulose into fermentable carbon source.


Asunto(s)
Escherichia coli , Polisacáridos , Xilanos , Escherichia coli/genética , Escherichia coli/metabolismo , Xilanos/metabolismo , Xilosa/metabolismo , Fermentación , Fibras de la Dieta
5.
Sci Total Environ ; 912: 169435, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128673

RESUMEN

Nanoplastics (NPs, diameter <1 µm) not only have toxicity but also change the toxicity of other pollutants in water. To date, the nanopolystyrene (nano-PS) size effect and its combined toxicity with halogenated polycyclic aromatic hydrocarbons (HPAHs) remain unclear. In this study, the single toxicity, combined toxicity, and mode of action of the binary mixture of polystyrene (PS) and HPAH were examined. At the same time, the nano-PS size effect on combined toxicity was also discussed. According to our results, the 48 h acute toxicity test results showed that 30 nm PS was highly toxic (EC50-48 h = 1.65 mg/L), 200 nm PS was moderately toxic (EC50-48 h = 17.8 mg/L), and 1 µm PS was lowly toxic (EC50-48 h = 189 mg/L). The NP toxicity decreased with increasing size. HPAHs were highly toxic substances to Daphnia magna (EC50-48 h = 0.12-0.22 mg/L). The mode of action of PS and HPAHs was antagonistic according to the toxicity unit method (TU), additive index method (AI), and mixture toxicity index method (MTI). The size effect of nano-PS operates via two mechanisms: the inherent toxicity of nano-PS and the sorption of pollutants by nano-PS. The former impacts the combined toxicity more than the latter. In the binary mixed system, the larger the particle size and the higher the proportion of NPs in the system, the less toxic the system was. Linear interpolation analysis can be used to predict the combined toxicity of a mixed system with any mixing ratio.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Daphnia magna , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Poliestirenos/toxicidad , Agua , Daphnia
6.
Med Res Arch ; 12(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39118855

RESUMEN

Background: Effective communication between schools and parents Is crucial for fostering understanding, trust, and collaboration to enhance educational outcomes and student well-being, especially during crises such as the COVID-19 pandemic. Moreover, the current level of communication between schools and families is frequently insufficient, exacerbating the difficulties in parental engagement, comprehension, and certain policy implementation. This deficiency becomes even more pronounced during crises due to the added stressors. This study aims to highlight the challenges of parental engagement and communication during the pandemic and propose a viable solution for school districts and schools to enhance trust, understanding, and collaboration in schools to prepare for future crises. Method: The study employs a mixed-methods approach, Including a scoping review of literature and policies on school communication during the pandemic, a survey study conducted among the Connecticut Independent Schools, and the Integration of results from both sources. The scoping review provides key themes and frameworks, while the survey collects quantitative and qualitative data to identify challenges and concerns. The proposed solution utilizes Epstein's Six Types of Involvement Framework for school districts and schools to guide effective communication and collaboration between schools and parents. Results: The scoping review and survey findings reveal several key Issues, Including hesitant parental perception of disease control strategies, the burden on parents in supporting online learning, the lack of resources and guidance for online learning, and the absence of central communication guidelines. The proposed solution, Epstein's Six Types of Involvement Framework, addresses these challenges by emphasizing parenting, communication, volunteering, learning at home, decision-making, and community collaboration. Conclusion: The study highlights the importance of effective communication between schools and parents during crises and proposes Epstein's Six Types of Involvement Framework as a comprehensive solution. By implementing this framework, schools can foster understanding, trust, and collaboration, leading to better educational outcomes for students. The findings have implications for school administrators, policymakers, and educators seeking to improve communication during crises and can facilitate more effective communication and parental engagement beyond health crises. Further research Is needed to evaluate the effectiveness and impact of implementing the framework in real-world crises. Moreover, healthcare professionals like pediatricians, psychologists, and school nurses are crucial in disease control in schools. The study proposes using Epstein's framework to Involve them directly, enhancing collaboration and trust, and empowering them to lead efforts in safeguarding students and staff health.

7.
Nanoscale ; 16(26): 12550-12558, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38884386

RESUMEN

Photocatalytic reduction of CO2 to chemical fuels is attractive for solving both the greenhouse effect and the energy crisis, but the key challenge is to design and synthesize photocatalysts with remarkable performance under visible light irradiation. Efficient catalytic carbon dioxide reduction (CO2RR) with light is considered a promising sustainable and clean approach to solve environmental problems. Herein, we found a new photocatalyst ([Mn(en)2]6[V12B18O54(OH)6]) (abbreviated as Mn6V12) based on the modifiability of polyoxometalates, in which Mn acts as a modifying unit to efficiently reduce CO2 to CO and effectively inhibit the hydrogen precipitation reaction. This Mn modified polyoxometalate catalyst has a maximum CO generation rate of 4625.0 µmol g-1 h-1 and a maximum H2 generation rate of 499.6 µmol g-1 h-1, with a selectivity of 90.3% for CO generation and 9.7% for H2 generation. This polyoxometalate photocatalyst can effectively reduce CO and inhibit the hydrogen precipitation reaction. It provides a new idea for the efficient photocatalytic carbon dioxide reduction (CO2RR) with polyoxometalate catalysts.

8.
Front Microbiol ; 14: 1082666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778851

RESUMEN

Introduction: Protein corona (PCN) adsorbed on the surface of nanoparticles has brought new research perspectives for the interaction between nanoparticles and microorganisms. In this study, the responses of saccharomyces cerevisiae' membrane lipid composition, the average length of the fatty acyl chains and the average number of unsaturation of fatty acids to ultrasound combined with nano-Fe3O4@PCN with time-limited proteolysis (nano-Fe3O4@TLP-PCN) was investigated. Methods: Lipidomic data was obtained using Ultra-high performance liquid chromatography coupled with a Q-Exactive plus mass spectrometer. The membrane potential, proton motive force assay and the membrane lipid oxidation were measured using Di-BAC4(3), DISC3(5) and C11-BODIPY581/591 as the probes. Combined with the approach of feasible virtual samples generation, the back propagation artificial neural network (BP-ANN) model was adopted to establish the mapping relationship between lipids and membrane properties. Results: The time-limited proteolysis targeting wheat PCN-coated Fe3O4 nanoparticles resulted in regular changes of hydrodynamic diameters, ζ-potentials, and surface hydrophobicity. In addition, with the prolongation of PCN proteolysis time, disturbances of 3 S.cerevisiae membrane characteristics, and membrane lipidomic remodeling in response to ultrasound+ nano-Fe3O4@PCN were observed. The analysis of relative importance which followed revealed that ergosterol, phosphatidylserine, and phosphatidylinositol phosphate had the greatest influence on membrane potential. For membrane lipid oxidation, ceramide, phosphatidylethanolamine, and sitosterol ester contribute 16.2, 14.9, and 13.1%, respectively. The relative contributions of six lysolecithins to the dissipation of proton motive force remained limited. Discussion: An adaptation mechanism of cell membrane to proteolyzed PCN, wherein lipidome remodeling could preserved functional membrane phenotypes was revealed. Furthermore, it is highlighted that the relative importances of SiE, Cer, PE and PIP in determining membrane potential, PMF dissipation and membrane lipid oxidation by establishing FVSG-BP-ANN model.

9.
Sci Rep ; 13(1): 2419, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765162

RESUMEN

Previous studies suggested that upper and lower facial halves might be involved in the human holistic face processing differently. In this study, we replicated and extended the finding above. In Experiment 1, we used the standard composite-face task to measure holistic face processing when participants made judgements on the upper and lower facial halves separately. Results showed that the composite-face effect was stronger for the upper facial half compared to the lower half. In Experiment 2, we investigated how facial information was integrated when participants focused on different features, using the perceptual field paradigm. Results showed that: (1) more "peripheral faces" were chosen when participants fixated at the eyes than when they fixated at the mouth; (2) less "peripheral faces" were chosen for inverted faces regardless of the fixated features. Findings from both experiments together indicate that more peripheral facial information were integrated when participants focused on the upper facial half, highlighting the significance of focusing on the upper facial half in face processing.


Asunto(s)
Reconocimiento Facial , Humanos , Orientación Espacial , Juicio , Cara , Boca
10.
Environ Pollut ; 334: 122211, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454720

RESUMEN

As a metabolic disruptor, bisphenol A (BPA) has been widely reported to disrupt lipid balance. Moreover, BPA has gained significant attention due to its estrogenic activity. While both ferroptosis and the G-protein-coupled estrogen receptor (GPER) have been implicated in lipid metabolism, their link to BPA-induced lipid accumulation remains unclear. In this study, chickens were randomly assigned to three groups and housed them for 4 weeks: a control group (0 µg/L BPA), a low dose group (50 µg/L BPA) and a high dose group (5000 µg/L BPA) to investigate the underlying mechanism of BPA-induced hepatotoxicity. Our results showed that BPA exposure significantly increased the contents of TG, TC, and LDL-C while decreasing HDL-C levels. We also found that BPA treatment altered the levels of genes involved in fatty acid ß-oxidation (ampkα, cpt-1, and ppaα), synthesis (acc, fas, scd-1, and srebp-1) and absorption (lpl and cd36). Moreover, the results showed that the BPA group had higher levels of IL-1ß, IL-18 and TNF-α. These results indicated that BPA exposure disrupted lipid metabolism and induced inflammation in the liver. We also demonstrated that BPA caused hepatic ferroptosis by raising iron content and the expression of genes related to lipid peroxidation (lpcat3, acsl4 and alox15), while reducing the expression of antioxidant system-associated genes (gpx4, slc7a11 and slc3a2). Importantly, BPA remarkably activated GPER expression in the liver. Interestingly, inhibition of GPER remarkably ameliorated BPA-induced lipid metabolism disorder, inflammatory response, and ferroptosis, indicating the crucial role of GPER in BPA-induced liver abnormalities. These findings highlight the link between GPER and ferroptosis in BPA-induced hepatotoxicity, providing new insights into the potential hazard of BPA.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ferroptosis , Animales , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Metabolismo de los Lípidos , Pollos/metabolismo , Hígado/metabolismo , Estrógenos/metabolismo , Compuestos de Bencidrilo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Lípidos
11.
Anal Chim Acta ; 1282: 341937, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37923410

RESUMEN

Transition metal oxides are widely used in the detection of heavy metal ions (HMIs), and the co-doping strategy that introducing a variety of different dopant atoms to modify them can obtain a better detection performance. However, there is very little research on the co-doped transition metal oxides by non-metallic elements for electrochemical detection. Herein, boron (B) and fluorine (F) co-doped CeO2 nanomaterial (BFC) is constructed to serve as the electrochemically sensitive interface for the detection of Hg(II). B and F affect the sensitivity of CeO2 to HMIs when they were introduced at different doping sites. Through a variety of characterization, it is proved that B is successfully doped into the lattice and F is doped on the surface of the material. Through the improvement of the catalytic properties and adsorption capacity of CeO2 by different doping sites, this B and F co-doped CeO2 exhibits excellent square wave anodic stripping voltammetry (SWASV) current responses to Hg(II). Both the high sensitivity of 906.99 µA µM-1 cm-2 and the low limit of detection (LOD) of 0.006 µM are satisfactory. Besides, this BFC glassy carbon electrode (GCE) also has good anti-interference property, which has been successfully used in the detection of Hg(II) in actual water. This discovery provides a useful strategy for designing a variety of non-metallic co-doped transition metal oxides to construct trace heavy metal ion-sensitive interfaces.

12.
Adv Sci (Weinh) ; 10(15): e2300189, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961096

RESUMEN

Sevoflurane has been the most widely used inhaled anesthetics with a favorable recovery profile; however, the precise mechanisms underlying its anesthetic action are still not completely understood. Here the authors show that sevoflurane activates a cluster of urocortin 1 (UCN1+ )/cocaine- and amphetamine-regulated transcript (CART+ ) neurons in the midbrain involved in its anesthesia. Furthermore, growth hormone secretagogue receptor (GHSR) is highly enriched in sevoflurane-activated UCN1+ /CART+ cells and is necessary for sleep induction. Blockade of GHSR abolishes the excitatory effect of sevoflurane on UCN1+ /CART+ neurons and attenuates its anesthetic effect. Collectively, their data suggest that anesthetic action of sevoflurane necessitates the GHSR activation in midbrain UCN1+ /CART+ neurons, which provides a novel target including the nucleus and receptor in the field of anesthesia.


Asunto(s)
Anestesia , Mesencéfalo , Sevoflurano/farmacología , Urocortinas , Sueño
13.
Behav Sci (Basel) ; 12(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36546985

RESUMEN

In previous research frameworks, researchers used an everyday dilemma to test people's altruistic versus egoistic inclination. However, there are at least three different psychological processes that could induce altruistic over egoistic decisions, i.e., stronger altruistic sensitivity, weaker egoistic sensitivity, and stronger overall action versus inaction preference. To dissociate these different psychological processes, we developed new materials and applied the CAN algorithm from traditional moral dilemma research in two studies. In Study 1, we designed scenarios varying with a 2 (egoistic/non-egoistic) × 2 (non-altruistic/altruistic) structure. Then, we recruited 209 participants to validate the scenarios and filtered six scene frameworks with 24 scenarios in total. In Study 2, we recruited 747 participants to judge whether they would conduct behavior that is simultaneously altruistic (or non-altruistic) and egoistic (or non-egoistic) in the filtered scenarios obtained from Study 1. They also filled in the Social Isolation Scale, Distress Disclosure Scale, and some other demographic information. As we dissociated the psychological processes using the CAN algorithm, significant correlations between social isolation and distress disclosure and three parameters (i.e., altruistic tendency, egoistic tendency, and overall action/inaction preference) underlying the altruistic choice were revealed to varying degrees. Other individual differences in the psychological processes in everyday moral decision-making were further demonstrated. Our study provided materials and methodological protocols to dissociate the multiple psychological processes in everyday moral decision-making. It promotes our insights on everyday moral decisions from a differential psychological processes perspective.

14.
Foods ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496692

RESUMEN

Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from S. cerevisiae was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when S. cerevisiae was stimulated by ultrasound + 0.1 mg/mL nano-Se@PC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered.

15.
Front Microbiol ; 13: 976206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003925

RESUMEN

Microorganisms play essential roles in flavor formation during soy sauce fermentation. Different soy sauce fermentation types significantly affect flavor formation. However, comparisons of microbial communities and metabolites between different fermentation types have been little studied. Here, we investigated variation in microbial communities, metabolite profiles, and metabolic pathways during Japanese-type (JP) and Cantonese-type (CP) fermentation. Free amino acids and volatile compound profiles varied significantly between fermentation types, with JP samples containing higher contents of esters (39.84%; p < 0.05), alcohols (44.70%; p < 0.05) in the 120 d fermentation samples. Volatile compound profiles varied significantly between fermentation types, with JP samples containing higher contents of esters, alcohols, and free amino acids (p < 0.05). Metagenomic analysis indicated that both JP and CP communities were dominated by Tetragenococcus, Staphylococcus, Weissella (bacteria), and Aspergillus (fungi), but the two communities varied differently over time. Tetragenococcus drastically increased in abundance throughout the fermentation (from 0.02 to 59.2%) in JP fermentation, whereas Tetragenococcus (36.7%) and Staphylococcus (29.7%) dominated at 120 d of fermentation in CP fermentation. Metagenomic functional profiles revealed that the abundances of most genes involved with carbohydrate, amino acid, and lipid metabolism exhibited significant differences between fermentation types (p < 0.05) during the middle to late fermentation stages. Furthermore, predicted metabolic pathways for volatile substance biosynthesis differed between JP and CP fermentation, likely explaining the differences in flavor metabolite profiles. In addition, most of the genes associated with flavor generation were affiliated with Tetragenococcus, Weissella, Staphylococcus, Bacillus, and Aspergillus, suggesting that these microbes play important roles in flavor production during soy sauce fermentation. This study significantly improves our understanding of microbial functions and their metabolic roles in flavor formation during different soy sauce fermentation processes.

16.
Front Microbiol ; 13: 841529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283863

RESUMEN

Koji making is a pre-fermentation stage in soy sauce manufacturing that impacts final product quality. Previous studies have provided valuable insights into the microbial species present in koji. However, changes in microbial community functional potential during koji-making are not well-known, nor are the associations among microbial populations and flavoring characteristics. In the present study, we investigated the succession of microbial communities, microbial community functional potential, metabolite profiles, and associations among microbial community members/functions with metabolites during koji making using shotgun metagenomic and metabolomic analyses. Firmicutes, Proteobacteria, and Ascomycota were identified as the most abundant microbial phyla in early koji making (0-12 h). Aspergillus (fungi) and Weissella (bacteria) exhibited marked abundance increases (0.98-38.45% and 0.31-30.41%, respectively) after 48 h of fermentation. Metabolite analysis revealed that aspartic acid, lysine, methyl acetate, isovaleraldehyde, and isoamyl alcohol concentrations increased ∼7-, 9-, 5-, 49-, and 10-fold after 48 h of fermentation. Metagenomic profiling demonstrated that koji communities were dominated by genes related to carbohydrate metabolism and amino acid metabolism, but functional profiles exhibited marked shifts after 24 h of fermentation. The abundances of genes within the categories of carbohydrate and amino acid metabolism all increased during koji making, except for pyruvate metabolism, glycolysis/gluconeogenesis, and the citrate cycle. Correlational analyses indicated that Aspergillus, Lactococcus, Enterococcus, Corynebacterium, and Kocuria abundances were positively correlated with 15 amino acid concentrations (all p < 0.05), while Weissella abundances were positively correlated with concentrations of volatile flavor compounds, including eight amino acids, phenylacetaldehyde, acetic acid, 2,3-butanediol, ethyl acetate, and ethanol (p < 0.05). These results provide valuable information for understanding the microbial-associated mechanisms of flavor formation during koji making.

17.
Cell Rep ; 41(11): 111824, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516774

RESUMEN

Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.


Asunto(s)
Núcleo Amigdalino Central , Vigilia , Tálamo/fisiología , Optogenética , Neuronas/fisiología , Vías Nerviosas/fisiología
18.
Front Oncol ; 11: 708263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277453

RESUMEN

COVID-19 and lung cancer are two severe pulmonary diseases that cause millions of deaths globally each year. Understanding the dysregulated signaling pathways between them can benefit treating the related patients. Recent studies suggest the critical role of reactive oxygen species (ROS) in both diseases, indicating an interplay between them. Here we reviewed references showing that ROS and ROS-associated signaling pathways, specifically via NRF2, HIF-1, and Nf-κB pathways, may bridge mutual impact between COVID-19 and lung cancer. As expected, typical ROS-associated inflammation pathways (HIF-1 and Nf-κB) are activated in both diseases. The activation of both pathways in immune cells leads to an overloading immune response and exacerbates inflammation in COVID-19. In lung cancer, HIF-1 activation facilitates immune escape, while Nf-κB activation in T cells suppresses tumor growth. However, the altered NRF2 pathway show opposite trends between them, NRF2 pathways exert immunosuppressive effects in both diseases, as it represses the immune response in COVID-19 patients while facilitates the immune escape of tumor cells. Furthermore, we summarized the therapeutic targets (e.g., phytochemicals) on these ROS pathways. In sum, our review focus on the understanding of ROS Signaling in COVID-19 and lung cancer, showing that modulating ROS signaling pathways may alleviate the potentially mutual impacts between COVID-19 and lung cancer patients.

19.
IEEE Trans Vis Comput Graph ; 16(6): 1515-24, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20975193

RESUMEN

Practical volume visualization pipelines are never without compromises and errors. A delicate and often-studied component is the interpolation of off-grid samples, where aliasing can lead to misleading artifacts and blurring, potentially hiding fine details of critical importance. The verifiable visualization framework we describe aims to account for these errors directly in the volume generation stage, and we specifically target volumetric data obtained via computed tomography (CT) reconstruction. In this case the raw data are the X-ray projections obtained from the scanner and the volume data generation process is the CT algorithm. Our framework informs the CT reconstruction process of the specific filter intended for interpolation in the subsequent visualization process, and this in turn ensures an accurate interpolation there at a set tolerance. Here, we focus on fast trilinear interpolation in conjunction with an octree-type mixed resolution volume representation without T-junctions. Efficient rendering is achieved by a space-efficient and locality-optimized representation, which can straightforwardly exploit fast fixed-function pipelines on GPUs.


Asunto(s)
Gráficos por Computador , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Animales , Carpas/anatomía & histología , Simulación por Computador , Análisis de Fourier , Imagenología Tridimensional/estadística & datos numéricos , Modelos Anatómicos , Tomografía Computarizada por Rayos X/estadística & datos numéricos
20.
Food Chem ; 302: 125275, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31442701

RESUMEN

2,6-Dimethoxy-ρ-benzoquinone (DMBQ) is a potential anti-tumor substance found in the fermented wheat germ. In this study, ultrasound and Fe3O4 nanoparticles were used to improve the DMBQ yield. An artificial neural network (ANN) embedded separately with the back-propagation algorithm (BP), genetic algorithm (GA), particle swarm optimized algorithm (PSO), ant colony optimized algorithm (ACO), GA-ACO, GA-PSO and PSO-ACO, were used to establish the relationship between 11 factors and DMBQ yield. The robustness and generalization of PSO-ACO-ANN, which gave the minimum mean squared error and mean absolute percentage error for the training and test dataset, was superior to the others. Next, a modified Garson's algorithm and mixed partial derivatives algorithm indicated that the most influential paired-parameters were ultrasonic power and concentration of nanoparticles. Finally, the factors were optimized by six optimization algorithms, and confirmatory experimental results indicated that the optimum DMBQ yield was 0.213 ±â€¯0.007 mg/g, which was 161.2% higher than the control.


Asunto(s)
Algoritmos , Benzoquinonas/metabolismo , Fermentación/efectos de los fármacos , Nanopartículas de Magnetita , Triticum/efectos de los fármacos , Triticum/metabolismo , Ondas Ultrasónicas , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA