Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hepatology ; 77(5): 1670-1687, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35796622

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease and its progressive form, nonalcoholic steatohepatitis (NASH), are rapidly becoming the top causes of hepatocellular carcinoma (HCC). Currently, there are no approved therapies for the treatment of NASH. DEAD-box protein 5 (DDX5) plays important roles in different cellular processes. However, the precise role of DDX5 in NASH remains unclear. APPROACH AND RESULTS: DDX5 expression was downregulated in patients with NASH, mouse models with diet-induced NASH (high-fat diet [HFD], methionine- and choline-deficient diet, and choline-deficient HFD), mouse models with NASH-HCC (diethylnitrosamine with HFD), and palmitic acid-stimulated hepatocytes. Adeno-associated virus-mediated DDX5 overexpression ameliorates hepatic steatosis and inflammation, whereas its deletion worsens such pathology. The untargeted metabolomics analysis was carried out to investigate the mechanism of DDX5 in NASH and NASH-HCC, which suggested the regulatory effect of DDX5 on lipid metabolism. DDX5 inhibits mechanistic target of rapamycin complex 1 (mTORC1) activation by recruiting the tuberous sclerosis complex (TSC)1/2 complex to mTORC1, thus improving lipid metabolism and attenuating the NACHT-, leucine-rich-repeat (LRR)-, and pyrin domain (PYD)-containing protein 3  inflammasome activation. We further identified that the phytochemical compound hyperforcinol K directly interacted with DDX5 and prevented its ubiquitinated degradation mediated by ubiquitin ligase (E3) tripartite motif protein 5, thereby significantly reducing lipid accumulation and inflammation in a NASH mouse model. CONCLUSIONS: These findings provide mechanistic insight into the role of DDX5 in mTORC1 regulation and NASH progression, as well as suggest a number of targets and a promising lead compound for therapeutic interventions against NASH.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Hepáticas/patología , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Colina/metabolismo , ARN Helicasas DEAD-box/metabolismo , Ratones Endogámicos C57BL , Hígado/patología , Modelos Animales de Enfermedad
2.
J Assist Reprod Genet ; 41(5): 1371-1385, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492155

RESUMEN

OBJECTIVE: As important functional cells in the ovary, ovarian granulosa cells are involved in the regulation of oocyte growth and development and play an important role in the study of female fertility preservation. Based on the importance of granulosa cell functionalism, in this study, we analyzed the exosome secretion capacity of human ovarian granulosa cells (SVOG/KGN-cell line, PGC-primary cells) and the differences in their miRNA expression. METHODS: Cells were identified by hematoxylin-eosin staining (HE) and FSHR immunofluorescence staining; CCK8 and colony-forming assay were performed to compare cell proliferation capacity; exosomes were extracted and identified by ultra-high speed centrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot analysis (WB), and the expression profile of each cellular exosomal miRNA was analyzed by miRNA high-throughput sequencing. RESULTS: The proliferative abilities of the three granulosa cells differed, but all had the ability to secrete exosomes. In the exosomes of SVOG, KGN, and PGC cells, 218, 327, and 471 miRNAs were detected, respectively. When compared to the exosomal miRNAs of PGC cells, 111 miRNAs were significantly different in SVOG, and 70 miRNAs were washed two significantly different in KGN cells. These differential miRNA functions were mainly enriched in the cell cycle, cell division/differentiation, multicellular biogenesis, and protein binding. CONCLUSION: Human ovarian granulosa cells of different origins are capable of secreting exosomes, but there are still some differences in their exosomes and exosomal miRNAs, and experimental subjects should be selected rationally according to the actual situation.


Asunto(s)
Proliferación Celular , Exosomas , Células de la Granulosa , MicroARNs , Humanos , Femenino , Exosomas/genética , Exosomas/metabolismo , Exosomas/ultraestructura , Células de la Granulosa/metabolismo , MicroARNs/genética , Proliferación Celular/genética , Perfilación de la Expresión Génica , Línea Celular
3.
Ecotoxicol Environ Saf ; 263: 115387, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598547

RESUMEN

Acidic soils cover approximately 50 % of the arable land with high N2O emission potential. 3,4-dimethylpyrazole phosphate (DMPP) inhibits N2O emission from soils; however, its efficiency is affected by acidity. Liming is used for soil conditioning to ameliorate the effects of acidity. In the present study, we investigated the effects of liming on the efficiency of DMPP in inhibiting N2O emission in acidic soils and the mechanisms involved. We evaluated the impact of liming, DMPP, and combined application and its microbial responses in two acidic soils from Zengcheng (ZC) and Shaoguan (SG) City, Guangdong Province, China. Soils were subjected to four treatments: un-limed soil (low soil pH) + urea (LU), un-limed soil + urea + DMPP (LD), limed soil (high soil pH) + urea (HU), and limed soil + urea + DMPP (HD) for analyses of the mineral N, N2O emissions, and full-length 16S and metagenome sequencing. The results revealed that, HU significantly decreased and increased the N2O emission by 17.8 % and 235.0 % in ZC and SG, respectively, compared with LU. This was caused by a trade-off between N2O production and consumption after liming, where microbial communities and N-cycling functional genes show various compositions in different acidic soils. LD reduced N2O emission by 23.5 % in ZC, whereas decreased 1.5 % was observed in SG. Interestingly, DMPP efficiency considerably improved after liming in two acidic soils. Compared with LU, HD significantly reduced N2O emissions by 61.2 % and 48.5 % in ZC and SG, respectively. Synergy of mitigation efficiency was observed by lime and DMPP application, which was attributed to the changes in the dominant nitrifiers and the increase in N2O consumption by denitrifiers. The combined application of lime and DMPP is a high-efficiency strategy for N2O mitigation can ensure agricultural sustainability in acidic arable soils with minimal environmental damage.


Asunto(s)
Fosfatos , Suelo , Óxido Nitroso , Yoduro de Dimetilfenilpiperazina
4.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3224-3234, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37382006

RESUMEN

This study aims to investigate the efficacy and possible mechanism of Liuwei Dihuang Pills in the treatment of diminished ovarian reserve(DOR) by using proteomic techniques. Firstly, cyclophosphamide(60 mg·kg~(-1)) combined with busulfan(6 mg·kg~(-1)) was injected intraperitoneally to establish the mouse model of DOR. After drug injection, the mice were continuously observed and the success of modeling was evaluated by the disturbance of the estrous cycle. After successful modeling, the mice were administrated with the suspension of Liuwei Dihuang Pills by gavage for 28 days. At the end of the gavage, four female mice were selected and caged together with males at a ratio of 2∶1 for the determination of the pregnancy rate. Blood and ovary samples were collected from the remaining mice on the next day after the end of gavage. Hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM) were then employed to observe the morphological and ultrastructural changes in the ovaries. The serum levels of hormones and oxidation indicators were measured by enzyme-linked immunosorbent assay. Quantitative proteomics techniques were used to compare the ovarian protein expression before and after modeling and before and after the intervention with Liuwei Dihuang Pills. The results showed that Liuwei Dihuang Pills regulated the estrous cycle of DOR mice, elevated the serum levels of hormones and anti-oxidation indicators, promoted follicle development, protected the mitochondrial morphology of ovarian granulosa cells, and increased the litter size and survival of DOR mice. Furthermore, Liuwei Dihuang Pills negatively regulated the expression of 12 differentially expressed proteins associated with DOR, which were mainly involved in lipid catabolism, inflammatory response, immune regulation, and coenzyme biosynthesis. These differentially expressed proteins were significantly enriched in sphingolipid metabolism, arachidonic acid metabolism, ribosomes, ferroptosis, and cGMP-PKG signaling pathway. In summary, the occurrence of DOR and the treatment of DOR with Liuwei Dihuang Pills are associated with multiple biological pathways, mainly including oxidative stress response, inflammatory response, and immune regulation. "Mitochondria-oxidative stress-apoptosis" is the key to the treatment of DOR by Liuwei Dihuang Pills. YY1 and CYP4F3 may be the key upstream targets that trigger mitochondrial dysfunction and ROS accumulation, and the metabolism of arachidonic acid is the main signaling pathway of drug action.


Asunto(s)
Reserva Ovárica , Femenino , Masculino , Embarazo , Animales , Ratones , Ácido Araquidónico , Proteómica , Ovario , Metabolismo de los Lípidos
5.
Ecotoxicol Environ Saf ; 230: 113123, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973605

RESUMEN

Soil microbial community drives the terrestrial carbon (C) cycling by C sources metabolism (i.e., organic C decomposition), however, the microbial response to changing acid rain frequency remains less studied, thus hampering global warming projection. Here, we manipulated a simulated experiment to decipher the impact of acid rain frequency (0, 30%, and 100%) on microbial community and C sources metabolism in the agricultural and forest soils of southern China, based on the phospholipid fatty acids (PLFAs) analysis and BIOLOG method, respectively. We found that changing acid rain frequency did not affect the microbial biomass and community structure of agricultural soil during the whole experiment period, while the 30% and 100% acid rain frequencies significantly decreased the microbial biomass, and altered the microbial community structure of forest soil at the early stage. However, changing acid rain frequency did not influence the microbial C sources metabolism in the agricultural soil, but 30% acid rain frequency significantly reduced the microbial utilization of carboxylic acids in the forest soil. Moreover, increasing acid rain frequency promoted the microbial community dissimilarities of forest soil. The microbial community structure and C sources utilization of agricultural soil were significantly related to soil available phosphorus content, while that of forest soil correlated with the soil available potassium content and temperature. Changes in soil environmental condition, soil acidification parameters and soil nutrients explained most of the variance of microbial community and C sources utilization (81% and 57%, respectively) in the forest soil, whereas great uncertainties of microbial community and C sources utilization existed in the agricultural soil with the explanatory proportion being 20% and 10%, respectively. Our findings suggest that the microbial community of forest soil is more sensitive to changing acid rain frequency than that of agricultural soil in a short term. These results support the prediction of microbes-driven C cycling dynamics in specific soil ecosystems in the context of changing acid rain frequency.

6.
J Sci Food Agric ; 102(10): 3972-3982, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34952981

RESUMEN

BACKGROUND: Cereal cultivation with legumes plays an important role in improving biodiversity and productivity. However, there are limited references concerning rice/legume mix-cropping in paddy fields. An aquatic leguminous plant, water mimosa (Neptunia oleracea Lour.), was introduced and a related field experiment of two seasons (early and late seasons in 2019) was carried out to explore the effects of rice/water mimosa mix-cropping on rice growth, yield, grain quality and soil nutrients in the present study. Three treatments - rice monocropping, rice/water mimosa intercropping and mix-cropping - were employed in this study. RESULTS: Results showed that rice grew better with greater height, tiller number, chlorophyll content, actual photosynthetic efficiency [Y(II)], maximum photochemical efficiency (Fv /Fm ) and photochemical quenching coefficient (qP) in the intercropping and mix-cropping treatments. In addition, the intercropping and mix-cropping treatments increased nutrient uptake of nitrogen (N) by11.89-24.42%, phosphorous (P) by 17.75-36.61% and potassium (K) by 19.22-47.44%, and rice yield by 19.9% and 21.8%. Conversely, the non-photochemical quenching coefficient (NPQ), chalkiness degree and chalky rate of rice were lower in the intercropping and mix-cropping treatments relative to those in the monocropping treatments. Notably, soil alkali-hydrolysable N (AN), available P (AP) and K (AK) contents were the highest in the mix-cropping treatments among the three cropping systems. CONCLUSION: We suggest that rice/water mimosa mix-cropping is an environmentally friendly agroecological system with a higher output and can be extended for green rice production and largely applied in the paddy field. © 2021 Society of Chemical Industry.


Asunto(s)
Mimosa , Oryza , Agricultura/métodos , Grano Comestible , Fertilizantes , Nutrientes , Suelo/química , Agua
7.
Ecotoxicol Environ Saf ; 224: 112681, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34450422

RESUMEN

Acid rain alters soil carbon (C) cycling by influencing the soil microbial community structure and functions. However, the response of soil microbial communities to acid rain with time and underlying mechanisms are still poorly understood. Herein, we conducted a one-year intact soil core experiment to investigate the temporal changes of soil microbial community composition and C sources metabolism under acid rain (pH 5.0, pH 4.0, and pH 3.0) in an agricultural soil of southern China. We found that pH 3.0 acid rain increased the total, bacterial, gram-positive bacterial, and actinomycetal PLFAs at the early stage, but this effect diminished with time. Conversely, the gram-negative bacterial PLFAs contents were reduced under pH 3.0 acid rain at the later stage. Interestingly, pH 5.0 acid rain increased the total, bacterial, gram-positive bacterial, and actinomycetal PLFAs contents at the later stage. In addition, pH 3.0 and pH 5.0 acid rain treatments accordingly altered the soil microbial community structure at the early and later stage. However, acid rain did not change the microbial C sources utilization pattern. The principal response curve analysis revealed that the seasonal variation exerted a greater effect on the overall variance of soil microbial community structure than the acidity of acid rain. Our results demonstrate the asynchronous response of soil microbial community structure and function, which implies that the microbial functional redundancy may exist in the subtropical agricultural soil under acid rain.

8.
Ecotoxicol Environ Saf ; 184: 109660, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31520949

RESUMEN

Roxarsone (ROX), an organoarsenic feed additive, and its metabolites, can be present in animal manure used to fertilize rice. Rice is prone to absorb arsenic, and is subject to straighthead disorder, which reduces rice yield and is linked with organic arsenic compounds. This study aims to elucidate how soil property affect arsenic accumulation in rice plants fertilized with chicken manure containing ROX metabolites. Manures of chickens fed without or with ROX, designated as control manure and ROX treated manure (ROXCM), respectively, were applied in eight paddy soils of different origins, to investigate the assimilation of arsenic species in rice plants. The results show that inorganic arsenic (arsenate and arsenite), monomethylarsonic acid and dimethylarsinic acid (DMA) were detected in all brown rice and husk, trace tetramethylarsonium and trimethylarsine oxide were occasionally found in these both parts, whereas all these arsenic species were determined in straw, irrespective of manure type. ROXCM application specifically and significantly increased brown rice DMA (P = 0.002), which remarkably enhanced the risk of straighthead disease in rice. Although soil total As impacted grain biomass, soil free-iron oxides and pH dominated arsenic accumulation by rice plants. The significantly increased grain DMA suggests manure bearing ROX metabolites is not suitable to be used in soils with abundant free-iron oxides and/or high pH, if straighthead disorder is to be avoided in rice.


Asunto(s)
Oryza/metabolismo , Roxarsona/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Animales , Biomasa , Pollos/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Estiércol/análisis , Oryza/crecimiento & desarrollo
9.
Phytomedicine ; 107: 154466, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182796

RESUMEN

BACKGROUND: Liver fibrosis is a common scarring response and may ultimately lead to liver cancer, unfortunately, there is currently no effective antifibrotic drug approved for human use. Limonoids exhibit a broad spectrum of biological activities; however, the potential role of limonoids against fibrosis is largely unknown. PURPOSE: This study investigates the antifibrotic activities and potential mechanisms of TKF (3-tigloyl-khasenegasin F), a natural mexicanolide-type limonoid derivative. STUDY DESIGN/METHODS: Two well-established mouse models (CCl4 challenge and bile duct ligation) were used to assess anti-fibrotic effects of TKF in vivo. Human hepatic stellate cell (HSC) line LX-2 and mouse primary hepatic stellate cells (pHSCs) also served as in vitro liver fibrosis models. RESULT: TKF administration significantly attenuated hepatic histopathological injury and collagen accumulation and suppressed fibrogenesis-associated gene expression including Col1a1, Acta2, and Timp1. In LX-2 cells and mouse pHSCs, TKF dose-dependently suppressed HSC activation and the expression levels of fibrogenic markers. Mechanistic studies showed that TKF inhibited Notch3-Hes1 and YAP signalings in vivo and in vitro. Furthermore, YAP inhibition or knockdown downregulated the Notch3 expression; however, Notch3 inhibition or knockdown did not affect the level of YAP in activated HSC. We revealed that TKF inhibited Notch3-Hes1 activation and downregulated hepatic fibrogenic gene expression via inhibiting YAP. CONCLUSION: The therapeutic benefit of TKF against liver fibrosis results from inhibition of YAP and Notch3-Hes1 pathways, indicating that TKF may be a novel therapeutic candidate for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Limoninas , Animales , Fibrosis , Humanos , Limoninas/farmacología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones , Receptor Notch3/metabolismo
10.
Microorganisms ; 9(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419116

RESUMEN

Acid rain (AR), as a global environmental threat, has profoundly adverse effects on natural soil ecosystems. Microorganisms involved in the nitrogen (N) cycle regulate the global N balance and climate stabilization, but little is known whether and how AR influences the structure and complexity of these microbial communities. Herein, we conducted an intact soil core experiment by manipulating the acidity of simulated rain (pH 7.5 (control, CK) vs. pH 4.0 (AR)) in subtropical agricultural soil, to reveal the differences in the structure and complexity of soil nitrifying and denitrifying microbiota using Illumina amplicon sequencing of functional genes (amoA, nirS, and nosZ). Networks of ammonia-oxidizing archaea (AOA) and nirS-carrying denitrifiers in AR treatment were less complex with fewer nodes and lower connectivity, while network of nosZ-carrying denitrifiers in AR treatment had higher complexity and connectivity relative to CK. Supporting this, AR reduced the abundance of keystone taxa in networks of AOA and nirS-carrying denitrifiers, but increased the abundance of keystone taxa in nosZ-carrying denitrifiers network. However, AR did not alter the community structure of AOA, ammonia-oxidizing bacteria (AOB), nirS-, and nosZ-carrying denitrifiers. Moreover, AR did not change soil N2O emissions during the experimental period. AOB community structure significantly correlated with content of soil available phosphorus (P), while the community structures of nirS- and nosZ-carrying denitrifiers both correlated with soil pH and available P content. Soil N2O emission was mainly driven by the nirS-carrying denitrifiers. Our results present new perspective on the impacts of AR on soil N-cycle microbial network complexity and keystone taxa in the context of global changes.

11.
NPJ Regen Med ; 6(1): 36, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188056

RESUMEN

Cardiovascular disease is the leading cause of death in the world due to losing regenerative capacity in the adult heart. Frogs possess remarkable capacities to regenerate multiple organs, including spinal cord, tail, and limb, but the response to heart injury and the underlying molecular mechanism remains largely unclear. Here we demonstrated that cardiomyocyte proliferation greatly contributes to heart regeneration in adult X. tropicalis upon apex resection. Using RNA-seq and qPCR, we found that the expression of Fos-like antigen 1 (Fosl1) was dramatically upregulated in early stage of heart injury. To study Fosl1 function in heart regeneration, its expression was modulated in vitro and in vivo. Overexpression of X. tropicalis Fosl1 significantly promoted the proliferation of cardiomyocyte cell line H9c2. Consistently, endogenous Fosl1 knockdown suppressed the proliferation of H9c2 cells and primary cardiomyocytes isolated from neonatal mice. Taking use of a cardiomyocyte-specific dominant-negative approach, we show that blocking Fosl1 function leads to defects in cardiomyocyte proliferation during X. tropicalis heart regeneration. We further show that knockdown of Fosl1 can suppress the capacity of heart regeneration in neonatal mice, but overexpression of Fosl1 can improve the cardiac function in adult mouse upon myocardium infarction. Co-immunoprecipitation, luciferase reporter, and ChIP analysis reveal that Fosl1 interacts with JunB and promotes the expression of Cyclin-T1 (Ccnt1) during heart regeneration. In conclusion, we demonstrated that Fosl1 plays an essential role in cardiomyocyte proliferation and heart regeneration in vertebrates, at least in part, through interaction with JunB, thereby promoting expression of cell cycle regulators including Ccnt1.

12.
Plants (Basel) ; 9(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668672

RESUMEN

Worldwide, rice blast (Pyricularia oryzae) causes more rice crop loss than other diseases. Acid rain has reduced crop yields globally for nearly a century. However, the effects of acid rain on rice-Pyricularia oryzae systems are still far from fully understood. In this study, we conducted a lab cultivation experiment of P. oryzae under a series of acidity conditions as well as a glasshouse cultivation experiment of rice that was inoculated with P. oryzae either before (P. + SAR) or after (SAR + P.) simulated acid rain (SAR) at pH 5.0, 4.0, 3.0 and 2.0. Our results showed that the growth and pathogenicity of P. oryzae was significantly inhibited with decreasing pH treatments in vitro culture. The SAR + P. treatment with a pH of 4.0 was associated with the highest inhibition of P. oryzae expansion. However, regardless of the inoculation time, higher-acidity rain treatments showed a decreased inhibition of P. oryzae via disease-resistance related enzymes and metabolites in rice leaves, thus increasing disease index. The combined effects of high acidity and fungal inoculation were more serious than that of either alone. This study provides novel insights into the effects of acid rain on the plant-pathogen interaction and may also serve as a guide for evaluating disease control and crop health in the context of acid rain.

13.
ACS Appl Mater Interfaces ; 10(21): 18400-18415, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29727162

RESUMEN

The design and preparation of an excellent corrosion protection coating is still a grand challenge and is essential for large-scale practical application. Herein, a novel cationic reduced graphene oxide (denoted as RGO-ID+)-based epoxy coating was fabricated for corrosion protection. RGO-ID+ was synthesized by in situ synthesis and salification reaction, which is stable dispersion in water and epoxy latex, and the self-aligned RGO-ID+-reinforced cathodic electrophoretic epoxy nanocomposite coating (denoted as RGO-ID+ coating) at the surface of metal was prepared by electrodeposition. The self-alignment of RGO-ID+ in the coatings is mainly attributed to the electric field force. The significantly enhanced anticorrosion performance of RGO-ID+ coating is proved by a series of electrochemical measurements in different concentrated NaCl solutions and salt spray tests. This superior anticorrosion property benefits from the self-aligned RGO-ID+ nanosheets and the quaternary-N groups present in the RGO-ID+ nanocomposite coating. Interestingly, the RGO-ID+ also exhibits a high antibacterial activity toward Escherichia coli with 83.4 ± 1.3% antibacterial efficiency, which is attributed to the synergetic effects of RGO-ID+ and the electrostatic attraction and hydrogen bonding between RGO-ID+ and E. coli. This work offers new opportunities for the successful development of effective corrosion protection and self-antibacterial coatings.


Asunto(s)
Grafito/química , Antibacterianos , Escherichia coli , Nanocompuestos
14.
ACS Appl Mater Interfaces ; 10(26): 22291-22302, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29882412

RESUMEN

The exploration of highly efficient and stable bifunctional electrocatalysts for overall water splitting is currently of extreme interest for the efficient conversion of sustainable energy sources. Herein, we provide an earth-abundant, low-cost, and highly efficient bifunctional electrocatalyst composed of cobalt sulfide (Co9S8) and molybdenum carbide (Mo2C) nanoparticles anchored to metal-organic frameworks (MOFs)-derived nitrogen, sulfur-codoped graphitic carbon (Co9S8-NSC@Mo2C). The new composite mode of the electrocatalyst was realized through simple pyrolysis processes. The composite electrocatalyst shows outstanding hydrogen evolution reaction (HER) performance and excellent stability over the entire pH range. For example, it has a lower overpotential of 74, 89, and 121 mV with the Tafel slopes of 69.3, 86.7, and 106.4 mV dec-1 to achieve a current density of 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M phosphate-buffered saline solutions, respectively. Moreover, it shows a small overpotential of 293 mV with a Tafel slope of 59.7 mV dec-1 to reach 10 mA cm-2 for the oxygen evolution reaction (OER) in 1.0 M KOH. The significantly enhanced HER and OER activities of Co9S8-NSC@Mo2C are mainly attributable to the electron transfer from Co to Mo2C, resulting in a lower Mo valence and a higher Co valence in Co9S8-NSC@Mo2C. Furthermore, using the Co9S8-NSC@Mo2C bifunctional electrocatalyst as both the anode for the OER and the cathode for the HER for overall water splitting, a cell voltage of only 1.61 V is needed to derive a current density of 10 mA cm-2. This interesting work offers a general method for designing and fabricating highly efficient and stable non-noble electrocatalysts for promising energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA