Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 29(46): 465709, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30188323

RESUMEN

The optical confinement and strong carrier coupling within a semiconductor nanostructure cavity are crucial for the modulation of emission properties. Fundamental understanding of the light-matter interaction in a low dimensional system is important. In this paper, we synthesized high-quality hexagonal Te-doped CdS nanowires by two-step chemical vapor deposition and investigated systematically the doping concentration, temperature, excitation power, excitation wavelength dependent Raman, photoluminescence and carrier lifetime decay. Scanning electron microscopy, energy dispersive x-ray spectrometry and x-ray diffraction confirmed Te-doping in the as-prepared samples. The strong surface optical (SO) phonon mode is observed in the micro-Raman spectra of an individual Te-CdS nanowire, which is unsuitable in large-sized structures. In situ micro-photoluminescence (µ-PL) characterization shows dominant confined defect state emission with whispering gallery mode (WGM) characteristics. The emission peak position shifts under increased excitation power, demonstrating the inelastic scattering by bound carriers. In addition, the short wavelength emission modes are dominant at a low temperature (80 K) while the long wavelength emission modes are dominant at a high temperature (300 K) due to different recombination processes contributing to the WGM resonant bands, which was also confirmed by the time-resolved PL measurement. All these results reflect strong coupling between the surface evanescent-wave in the WGM cavity and the SO phonon/polaron, which will facilitate the rational tailoring of surface/interface relevant properties for nanophotonic device applications.

2.
RSC Adv ; 10(31): 18368-18376, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35517236

RESUMEN

Recently, all-inorganic perovskites have attracted tremendous attention due to their excellent optoelectronic properties and extensive potential applications. However, these perovskites usually show a single emission wavelength because of the high ionic migration. Herein, we synthesized all-inorganic halide-mixed perovskite CsPbBr x I3-x microsheets with high crystal quality using the anti-solvent solution method and observed extraordinary green and red dual-color emission in single CsPbBr x I3-x microsheets. Power dependent PL spectra reveal excitonic and defect related recombination features of CsPbBr3 and CsPbI3 for the green and red emission. Temperature dependent PL spectra indicated a distinctive exciton-phonon coupling strength in CsPbBr x I3-x microsheets compared with pure CsPbBr3 and CsPbI3. The PL dynamics showing longer emission lifetime further confirmed this conclusion. Our work not only provides a novel strategy to produce stable dual-color emission integration, but also promotes the fundamental insight into the emission dynamics and exciton/free carrier related photophysics in all-inorganic halide-mixed perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA