Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Cell ; 31(2): 520-536, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30651348

RESUMEN

The apoplast serves as the first battlefield between the plant hosts and invading microbes; therefore, work on plant-pathogen interactions has increasingly focused on apoplastic immunity. In this study, we identified three proteins in the apoplast of cotton (Gossypium sp) root cells during interaction of the plant with the fungal pathogen Verticillium dahliae Among these proteins, cotton host cells secrete chitinase 28 (Chi28) and the Cys-rich repeat protein 1 (CRR1), while the pathogen releases the protease VdSSEP1. Biochemical analysis demonstrated that VdSSEP1 hydrolyzed Chi28, but CRR1 protected Chi28 from cleavage by Verticillium dahliae secretory Ser protease 1 (VdSSEP1). In accordance with the in vitro results, CRR1 interacted with Chi28 in yeast and plant cells and attenuated the observed decrease in Chi28 level that occurred in the apoplast of plant cells upon pathogen attack. Knockdown of CRR1 or Chi28 in cotton plants resulted in higher susceptibility to V. dahliae infection, and overexpression of CRR1 increased plant resistance to V dahliae, the fungus Botrytis cinerea, and the oomycete Phytophthora parasitica var nicotianae By contrast, knockout of VdSSEP1 in V. dahliae destroyed the pathogenicity of this fungus. Together, our results provide compelling evidence for a multilayered interplay of factors in cotton apoplastic immunity.


Asunto(s)
Quitinasas/metabolismo , Gossypium/metabolismo , Gossypium/microbiología , Proteínas de Plantas/metabolismo , Verticillium/patogenicidad , Quitinasas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética
2.
Plant J ; 95(6): 1055-1068, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29952082

RESUMEN

Salicylic acid (SA) signalling plays an essential role in plant innate immunity. In this study, we identified a component in the SA signaling pathway in potato (Solanum tuberosum), the transcription factor StbZIP61, and characterized its function in defence against Phytophthora infestans. Expression of StbZIP61 was induced upon P. infestans infection and following exposure to the defense signaling hormones SA, ethylene and jasmonic acid. Overexpression of StbZIP61 increased the tolerance of potato plants to P. infestans while RNA interference (RNAi) increased susceptibility. Yeast two-hybrid and pull down experiments revealed that StbZIP61 could interact with an NPR3-like protein (StNPR3L) that inhibited its DNA-binding and transcriptional activation activities. Moreover, StNPR3L interacted with StbZIP61 in an SA-dependent manner. Among candidate genes involved in SA-regulated defense responses, StbZIP61 had a significant impact on expression of StICS1, which encodes a key enzyme for SA biosynthesis. StICS1 transcription was induced upon P. infestans infection and this responsive expression to the pathogen was reduced in StbZIP61 RNAi plants. Accordingly, StICS1 expression was remarkably enhanced in StbZIP61-overexpressing plants. Together, our data demonstrate that StbZIP61 functions in concert with StNPR3L to regulate the temporal activation of SA biosynthesis, which contributes to SA-mediated immunity against P. infestans infection in potato.


Asunto(s)
Phytophthora infestans , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Ácido Salicílico/metabolismo , Solanum tuberosum/microbiología , Factores de Transcripción/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
3.
Plant Physiol ; 170(4): 2392-406, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26869704

RESUMEN

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.


Asunto(s)
Gossypium/metabolismo , Gossypium/microbiología , Homeostasis , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Verticillium/fisiología , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Especificidad de Órganos/genética , Filogenia , Raíces de Plantas/metabolismo , Haz Vascular de Plantas/metabolismo , Proteómica
4.
J Exp Bot ; 67(6): 1935-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26873979

RESUMEN

Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses.


Asunto(s)
Retroalimentación Fisiológica , Gossypium/inmunología , Gossypium/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Verticillium/fisiología , Arabidopsis/genética , Calcio/metabolismo , Señalización del Calcio/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Gossypium/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos , Fracciones Subcelulares/metabolismo , Transactivadores/metabolismo , Transcripción Genética
5.
Plant Cell Physiol ; 55(1): 148-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214268

RESUMEN

Examination of aquaporin (AQP) membrane channels in extremophile plants may increase our understanding of plant tolerance to high salt, drought or other conditions. Here, we cloned a tonoplast AQP gene (TsTIP1;2) from the halophyte Thellungiella salsuginea and characterized its biological functions. TsTIP1;2 transcripts accumulate to high levels in several organs, increasing in response to multiple external stimuli. Ectopic overexpression of TsTIP1;2 in Arabidopsis significantly increased plant tolerance to drought, salt and oxidative stresses. TsTIP1;2 had water channel activity when expressed in Xenopus oocytes. TsTIP1;2 was also able to conduct H2O2 molecules into yeast cells in response to oxidative stress. TsTIP1;2 was not permeable to Na(+) in Xenopus oocytes, but it could facilitate the entry of Na(+) ions into plant cell vacuoles by an indirect process under high-salinity conditions. Collectively, these data showed that TsTIP1;2 could mediate the conduction of both H2O and H2O2 across membranes, and may act as a multifunctional contributor to survival of T. salsuginea in highly stressful habitats.


Asunto(s)
Acuaporinas/metabolismo , Brassicaceae/fisiología , Estrés Fisiológico , Vacuolas/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/fisiología , Transporte Biológico/efectos de los fármacos , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Clonación Molecular , Difusión , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Filogenia , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos , Agua/metabolismo , Xenopus
6.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23715527

RESUMEN

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Asunto(s)
Gossypium/citología , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Gravitropismo/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Tricomas/genética , Tricomas/metabolismo
7.
Plant Physiol ; 159(2): 835-50, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492844

RESUMEN

The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.


Asunto(s)
Diferenciación Celular , Flores/ultraestructura , Nicotiana/genética , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Aumento de la Célula , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Nicotiana/citología , Nicotiana/fisiología , Técnicas del Sistema de Dos Híbridos
8.
Plant Cell Environ ; 35(3): 588-600, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21988377

RESUMEN

Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.


Asunto(s)
Arabidopsis/fisiología , Chenopodiaceae/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Estrés Oxidativo , Actinas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , Células Cultivadas , Chenopodiaceae/metabolismo , Proteínas de Cloroplastos/genética , Clonación Molecular , Citoesqueleto/metabolismo , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología
9.
J Integr Plant Biol ; 54(6): 412-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22583823

RESUMEN

AaNhaD, a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica, encodes a Na(+) /H(+) antiporter crucial for the bacterium's resistance to salt/alkali stresses. However, it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses. To investigate the use of extremophile genetic resources in higher plants, transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated. Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner. Compared to wild-type controls, the transgenic cells exhibited increased Na(+) concentrations and pH levels in the vacuoles. Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts. Similar to the transgenic BY-2 cells, AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil. These results indicate that AaNhaD functions as a pH-dependent tonoplast Na(+) /H(+) antiporter in plant cells, thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.


Asunto(s)
Gammaproteobacteria/genética , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Sodio/metabolismo , Línea Celular , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo , Nicotiana/metabolismo , Vacuolas/metabolismo
10.
Plant Cell Environ ; 31(7): 982-94, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18373622

RESUMEN

Suaeda salsa is a leaf-succulent euhalophytic plant capable of surviving under seawater salinity. Here, we report the isolation and functional analysis of a novel Suaeda gene (designated as SsTypA1) encoding a member of the TypA/BipA GTPase gene family. The steady-state transcript level of SsTypA1 in S. salsa was up-regulated in response to various external stressors. Expression of SsTypA1 was restricted to the epidermal layers of the leaf and stem in S. salsa, and SsTypA1-green fluorescence protein (GFP) fusion proteins were targeted to the chloroplasts of tobacco leaves. Ectopic over-expression of SsTypA1 rendered the transgenic tobacco plants with significantly increased tolerance to oxidative stress, and this was accompanied by a reduction in H(2)O(2) content. Enzymatic and Western blot analyses revealed that the activity and amount of the thylakoid-bound NAD(P)H dehydrogenase (NDH) complex in the chloroplasts of leaf cells were enhanced. Additionally, an in vitro assay demonstrated that SsTypA1 bound to GTP and possessed GTPase activity that was stimulated by the presence of chloroplast 70S ribosomes. Together, these results suggest that SsTypA1 may play a critical role in the development of oxidative stress tolerance, perhaps as a translational regulator of the stress-responsive proteins involved in reactive oxygen species (ROS) suppression in chloroplast.


Asunto(s)
Adaptación Fisiológica , Chenopodiaceae/enzimología , Cloroplastos/enzimología , GTP Fosfohidrolasas/metabolismo , Estrés Oxidativo , Secuencia de Bases , Northern Blotting , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Clonación Molecular , Cartilla de ADN , ADN Complementario , GTP Fosfohidrolasas/genética , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Microscopía Electrónica de Rastreo , Filogenia , Especies Reactivas de Oxígeno , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Plant Sci ; 268: 1-10, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29362078

RESUMEN

Accumulating evidence indicates that plant plastocyanin is involved in copper homeostasis, yet the physiological relevance remains elusive. In this study, we found that a plastocyanin gene (SsPETE2) from euhalophyte Suaeda salsa possessed a novel antioxidant function, which was associated with the copper-chelating activity of SsPETE2. In S. salsa, expression of SsPETE2 increased in response to oxidative stress and ectopic expression of SsPETE2 in Arabidopsis enhanced the antioxidant ability of the transgenic plants. SsPETE2 bound Cu ion and alleviated formation of hydroxyl radicals in vitro. Accordingly, SsPETE2 expression lowered the free Cu content that was associated with reduced H2O2 level under oxidative stress. Arabidopsis pete1 and pete2 mutants showed ROS-sensitive phenotypes that could be restored by expression of SsPETE2 or AtPETEs. In addition, SsPETE2-expressing plants exhibited more potent tolerance to oxidative stress than plants overexpressing AtPETEs, likely owing to the stronger copper-binding activity of SsPETE2 than AtPETEs. Taken together, these results demonstrated that plant PETEs play a novel role in oxidative stress tolerance by regulating Cu homeostasis under stress conditions, and SsPETE2, as an efficient copper-chelating PETE, potentially could be used in crop genetic engineering.


Asunto(s)
Adaptación Fisiológica , Chenopodiaceae/genética , Chenopodiaceae/fisiología , Expresión Génica Ectópica , Estrés Oxidativo/genética , Proteínas de Plantas/metabolismo , Plastocianina/genética , Adaptación Fisiológica/efectos de los fármacos , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Quelantes/farmacología , Chenopodiaceae/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cobre/farmacología , Desoxirribosa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Radical Hidroxilo/metabolismo , Iones , Hierro/metabolismo , Simulación de Dinámica Molecular , Mutación/genética , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastocianina/metabolismo , Transporte de Proteínas/efectos de los fármacos
13.
J Plant Res ; 120(2): 337-43, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17287892

RESUMEN

The vascular tissue of roots performs essential roles in the physical support and transport of water, nutrients, and signaling molecules in higher plants. The molecular mechanisms underlying the function of root vascular tissue are poorly understood. In this study, we analyzed the expression pattern of AtGRP9, a salt stress-responsive gene encoding a glycine-rich protein, and its interacting partner, in Arabidopsis thaliana. Analysis of GUS or GFP expression under the control of the AtGRP9 promoter showed that AtGRP9 was expressed in the vascular tissue of the root; subcellular localization analysis further demonstrated that AtGRP9 proteins were localized in the cell wall and in the cytoplasm. Yeast two-hybrid analysis revealed that AtGRP9 interacted with AtCAD5, a major cinnamyl alcohol dehydrogenase (CAD) involved in lignin biosynthesis, for which tissue-specific distribution was comparable with that of AtGRP9. These results suggest that AtGRP9 may be involved in lignin synthesis in response to salt stress as a result of its interaction with AtCAD5 in A. thaliana.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Raíces de Plantas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Epidermis de la Planta/citología , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Plantones/citología , Fracciones Subcelulares/metabolismo
14.
Planta ; 226(4): 827-38, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17541631

RESUMEN

The dehydration-responsive element binding (DREB) transcription factors play central roles in regulating expression of stress-inducible genes under abiotic stresses. In the present work, PpDBF1 (Physcomitrella patens DRE-binding Factor1) containing a conserved AP2/ERF domain was isolated from the moss P. patens. Sequence comparison and phylogenetic analysis revealed that PpDBF1 belongs to the A-5 group of DREB transcription factor subfamily. The transcriptional activation activity and DNA-binding specificity of PpDBF1 were verified by yeast one-hybrid and electrophoretic mobility shift assay experiments, and its nuclear localization was demonstrated by particle biolisitics. PpDBF1 transcripts were accumulated under various abiotic stresses and phytohormones treatments in P. patens, and transgenic tobacco plants over-expressing PpDBF1 gained higher tolerance to salt, drought and cold stresses. These results suggest that PpDBF1 may play a role in P. patens as a DREB transcription factor, implying that similar regulating systems are conserved in moss and higher plants.


Asunto(s)
Adaptación Fisiológica , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Bryopsida/genética , Núcleo Celular/metabolismo , Frío , Genes de Plantas , Datos de Secuencia Molecular , Presión Osmótica , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética
15.
Plant Cell Physiol ; 47(8): 1058-68, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16854938

RESUMEN

Plant non-symbiotic hemoglobins (nsHbs) play important roles in a variety of cellular processes. Previous evidence from this laboratory indicates that the expression of a class 1 nsHb gene (GhHb1) from cotton is induced in cotton roots challenged with the Verticillium wilt fungus. The present study examined further the expression patterns of the GhHb1 gene in cotton plants and characterized its in vivo function through ectopic overexpression of the gene in Arabidopsis thaliana. Expression of GhHb1 in cotton plants was induced by exogenously applied salicylic acid, methyl jasmonic acid, ethylene, hydrogen peroxide (H(2)O(2)) and nitric oxide (NO). Ectopic overproduction of GhHb1 in Arabidopsis led to constitutive expression of the defense genes PR-1 and PDF1.2, and conferred enhanced disease resistance to Pseudomonas syringae and tolerance to V. dahliae. GhHb1-transgenic Arabidopsis seedlings were more tolerant to exogenous NO and contained lower levels of cellular NO than the wild-type control. Moreover, transgenic plants with relatively high levels of expression of the GhHb1 gene developed spontaneous hypersensitive lesions on the leaves in the absence of pathogen inoculation. Our results indicate that GhHb1 proteins play a role in the defense responses against pathogen invasions, possibly by modulating the NO level and the ratio of H(2)O(2)/NO in the defense process.


Asunto(s)
Arabidopsis/fisiología , Hemoglobinas/fisiología , Inmunidad Innata/fisiología , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular/fisiología , Defensinas/metabolismo , Gossypium/genética , Hemoglobinas/genética , Inmunidad Innata/genética , Nitroprusiato/farmacología , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , Verticillium/patogenicidad , Verticillium/fisiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA