Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Plant J ; 117(4): 1084-1098, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934816

RESUMEN

Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Xilanos/metabolismo , Ramnogalacturonanos/análisis , Ramnogalacturonanos/metabolismo , Mananos/metabolismo , Acetilación , Birrefringencia , Tricomas/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Catálisis , Pared Celular/metabolismo
2.
Plant Cell Physiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915186

RESUMEN

Members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases catalyzing the acetylation of plant cell wall polysaccharides, including pectins, mannan, xyloglucan and xylan. However, little is known about the origin and evolution of plant cell wall polysaccharide acetyltransferases. Here, we investigated the biochemical functions of TBL homologs from Klebsormidium nitens, a representative of an early divergent class of charophyte green algae that are considered to be the closest living relatives of land plants, and Marchantia polymorpha, a liverwort that is an extant representative of an ancient lineage of land plants. The genomes of K. nitens and M. polymorpha harbor two and six TBL homologs, respectively. Biochemical characterization of their recombinant proteins expressed in human embryonic kidney (HEK) 293 cells demonstrated that the two K. nitens TBLs exhibited acetyltransferase activities acetylating the pectin homogalacturonan (HG) and hence were named KnPOAT1 and KnPOAT2. Among the six M. polymorpha TBLs, five of them (MpPOAT1 to 5) possessed acetyltransferase activities toward pectins and the remaining one (MpMOAT1) catalyzed 2-O- and 3-O-acetylation of mannan. While MpPOAT1,2 specifically acetylated HG, MpPOAT3,4,5 could acetylate both HG and rhamnogalacturonan-I (RG-I). Consistent with the acetyltransferase activities of these TBLs, pectins isolated from K. nitens and both pectins and mannan from M. polymorpha were shown to be acetylated. These findings indicate that the TBL genes were recruited as cell wall polysaccharide O-acetyltransferases as early as in charophyte green algae with activities toward pectins and they underwent expansion and functional diversification to acetylate various cell wall polysaccharides during evolution of land plants.

3.
Plant Cell Physiol ; 65(6): 1065-1079, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38501734

RESUMEN

Grass xylan consists of a linear chain of ß-1,4-linked xylosyl residues that often form domains substituted only with either arabinofuranose (Araf) or glucuronic acid (GlcA)/methylglucuronic acid (MeGlcA) residues, and it lacks the unique reducing end tetrasaccharide sequence found in dicot xylan. The mechanism of how grass xylan backbone elongation is initiated and how its distinctive substitution pattern is determined remains elusive. Here, we performed biochemical characterization of rice xylan biosynthetic enzymes, including xylan synthases, glucuronyltransferases and methyltransferases. Activity assays of rice xylan synthases demonstrated that they required short xylooligomers as acceptors for their activities. While rice xylan glucuronyltransferases effectively glucuronidated unsubstituted xylohexaose acceptors, they transferred little GlcA residues onto (Araf)-substituted xylohexaoses and rice xylan 3-O-arabinosyltransferase could not arabinosylate GlcA-substituted xylohexaoses, indicating that their intrinsic biochemical properties may contribute to the distinctive substitution patterns of rice xylan. In addition, we found that rice xylan methyltransferase exhibited a low substrate binding affinity, which may explain the partial GlcA methylation in rice xylan. Furthermore, immunolocalization of xylan in xylem cells of both rice and Arabidopsis showed that it was deposited together with cellulose in secondary walls without forming xylan-rich nanodomains. Together, our findings provide new insights into the biochemical mechanisms underlying xylan backbone elongation and substitutions in grass species.


Asunto(s)
Oryza , Proteínas de Plantas , Xilanos , Xilanos/metabolismo , Oryza/genética , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pentosiltransferasa/metabolismo , Pentosiltransferasa/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Xilema/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética
4.
Small ; : e2312134, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618938

RESUMEN

Phase change materials (PCMs) present a dual thermal management functionality through intrinsic thermal energy storage (TES) capabilities while maintaining a constant temperature. However, the practical application of PCMs encounters challenges, primarily stemming from their low thermal conductivity and shape-stability issues. Despite significant progress in the development of solid-solid PCMs, which offer superior shape-stability compared to their solid-liquid counterparts, they compromise TES capacity. Herein, a universal phase engineering strategy is introduced to address these challenges. The approach involves compositing solid-liquid PCM with a particulate-based conductive matrix followed by surface reaction to form a solid-solid PCM shell, resulting in a core-shell composite with enhanced thermal conductivity, high thermal storage capacity, and optimal shape-stability. The core-shell structure designed in this manner not only encapsulates the energy-rich solid-liquid PCM core but also significantly enhances TES capacity by up to 52% compared to solid-solid PCM counterparts. The phase-engineered high-performance PCMs exhibit excellent thermal management capabilities by reducing battery cell temperature by 15 °C and demonstrating durable solar-thermal-electric power generation under cloudy or no sunshine conditions. This proposed strategy holds promise for extending to other functional PCMs, offering a compelling avenue for the development of high-performance PCMs for thermal energy applications.

5.
Planta ; 259(5): 115, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589536

RESUMEN

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Asunto(s)
Arabidopsis , Oryza , Glicosiltransferasas/análisis , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulación del Acoplamiento Molecular , UDP Xilosa Proteína Xilosiltransferasa , Poaceae/metabolismo , Pared Celular/metabolismo
6.
Plant Physiol ; 193(2): 1109-1125, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37341542

RESUMEN

ß-Galactosidases (Bgals) remove terminal ß-D-galactosyl residues from the nonreducing ends of ß-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) ß-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical ß-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.


Asunto(s)
Oryza , Xanthomonas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción del Choque Térmico/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Xanthomonas/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
Plant J ; 112(1): 193-206, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35959609

RESUMEN

Grass xylan, the major hemicellulose in both primary and secondary cell walls, is heavily decorated with α-1,3-linked arabinofuranosyl (Araf) residues that may be further substituted at O-2 with xylosyl (Xyl) or Araf residues. Although xylan 3-O-arabinosyltransferases (XATs) catalyzing 3-O-Araf addition onto xylan have been characterized, glycosyltransferases responsible for the transfer of 2-O-Xyl or 2-O-Araf onto 3-O-Araf residues of xylan to produce the Xyl-Araf and Araf-Araf disaccharide side chains remain to be identified. In this report, we showed that a rice GT61 member, named OsXAXT1 (xylan arabinosyl 2-O-xylosyltransferase 1) herein, was able to mediate the addition of Xyl-Araf disaccharide side chains onto xylan when heterologously co-expressed with OsXAT2 in the Arabidopsis gux1/2/3 (glucuronic acid substitution of xylan 1/2/3) triple mutant that lacks any glycosyl substitutions. Recombinant OsXAXT1 protein expressed in human embryonic kidney 293 cells exhibited a xylosyltransferase activity catalyzing the addition of Xyl from UDP-Xyl onto arabinosylated xylooligomers. Consistent with its function as a xylan arabinosyl 2-O-xylosyltransferase, CRISPR-Cas9-mediated mutations of the OsXAXT1 gene in transgenic rice plants resulted in a reduction in the level of Xyl-Araf disaccharide side chains in xylan. Furthermore, we revealed that XAXT1 close homologs from several other grass species, including switchgrass, maize, and Brachypodium, possessed the same functions as OsXAXT1, indicating functional conservation of XAXTs in grass species. Together, our findings establish that grass XAXTs are xylosyltransferases catalyzing Xyl transfer onto O-2 of Araf residues of xylan to form the Xyl-Araf disaccharide side chains, which furthers our understanding of genes involved in xylan biosynthesis.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Disacáridos/análisis , Disacáridos/metabolismo , Ácido Glucurónico/análisis , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Oryza/genética , Oryza/metabolismo , Pentosiltransferasa , Plantas Modificadas Genéticamente/metabolismo , Uridina Difosfato/metabolismo , Xilanos/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
8.
Planta ; 257(2): 43, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36689015

RESUMEN

MAIN CONCLUSION: We have demonstrated that the Arabidopsis FRA9 (fragile fiber 9) gene is specifically expressed in secondary wall-forming cells and essential for the synthesis of the unique xylan reducing end sequence. Xylan is made of a linear chain of ß-1,4-linked xylosyl (Xyl) residues that are often substituted with (methyl)glucuronic acid [(Me)GlcA] side chains and may be acetylated at O-2 and/or O-3. The reducing end of xylan from gymnosperms and dicots contains a unique tetrasaccharide sequence consisting of ß-D-Xylp-(1 → 3)-α-L-Rhap-(1 → 2)-α-D-GalpA-(1 → 4)-D-Xylp, the synthesis of which requires four different glycosyltransferase activities. Genetic analysis in Arabidopsis thaliana has so far implicated three glycosyltransferase genes, FRA8 (fragile fiber 8), IRX8 (irregular xylem 8) and PARVUS, in the synthesis of this unique xylan reducing end sequence. Here, we report the essential role of FRA9, a member of glycosyltransferase family 106 (GT106), in the synthesis of this sequence. The expression of the FRA9 gene was shown to be induced by secondary wall master transcriptional regulators and specifically associated with secondary wall-forming cells, including xylem and fiber cells. T-DNA knockout mutation of the FRA9 gene caused impaired secondary cell wall thickening in leaf veins and a severe arrest of plant growth. RNA interference (RNAi) downregulation of FRA9 led to a significant reduction in secondary wall thickening of fibers, a deformation of xylem vessels and a decrease in xylan content. Structural analysis of xylanase-released xylooligomers revealed that RNAi downregulation of FRA9 resulted in a diminishment of the unique xylan reducing end sequence and complete methylation of xylan GlcA side chains, chemotypes reminiscent of those of the fra8, irx8 and parvus mutants. Furthermore, two FRA9 close homologs from Populus trichocarpa were found to be wood-associated functional orthologs of FRA9. Together, our findings uncover a member of the GT106 family as a new player involved in the synthesis of the unique reducing end sequence of xylan.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Glicosiltransferasas/genética , Proteínas de Arabidopsis/metabolismo , Xilanos/metabolismo , Mutación , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Small ; 18(5): e2105767, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34881507

RESUMEN

Nitrogen-doped carbon materials with abundant defects and strong potassium adsorption ability have been recognized as potential anodes for potassium ion batteries (PIBs). However, the limited content and uncontrolled type of nitrogen-doped sites hinder the further performance improvement of PIBs. Herein, this work proposes nitrogen phosphorous co-doped hollow carbon nanofibers (PNCNFs) derived from high-energy metal-organic frameworks (MOFs) with an ultra-high nitrogen content of 19.52 wt% and a high portion of more reactive pyridinic N sites. Furthermore, the highly open architecture exploded by released gases from high-energy MOFs provides sufficient edge sites to settle the N atoms and further form pyridinic N sites induced by phosphorous dopants. The resulting PNCNFs achieve excellent potassium ion storage performance with high reversible capacity (466.2 mAh g-1 ), superb rate capability (244.4 mAh g-1 at 8 A g-1 ), and excellent cycling performance (294.6 mAh g-1 after 3250 cycles). The density functional theory calculation reveals that the N/P defects enhance the potassium adsorption ability and improve the conductivity.

10.
Planta ; 256(4): 70, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068444

RESUMEN

MAIN CONCLUSION: Several pine members of the gymnosperm-specific GT61 clades were demonstrated to be arabinosyltransferases and xylosyltransferases catalyzing the transfer of 2-O-Araf, 3-O-Araf and 2-O-Xyl side chains onto xylooligomer acceptors, indicating their possible involvement in Araf and Xyl substitutions of xylan in pine. Xylan in conifer wood is substituted at O-2 with methylglucuronic acid (MeGlcA) as well as at O-3 with arabinofuranose (Araf), which differs from xylan in dicot wood that is typically decorated with MeGlcA but not Araf. Currently, glycosyltransferases responsible for conifer xylan arabinosylation have not been identified. Here, we investigated the roles of pine glycosyltransferase family 61 (GT61) members in xylan substitutions. Biochemical characterization of four pine wood-associated GT61 members showed that they exhibited three distinct glycosyltransferase activities involved in xylan substitutions. Two of them catalyzed the addition of 2-O-α-Araf or 3-O-α-Araf side chains onto xylooligomer acceptors and thus were named Pinus taeda xylan 2-O-arabinosyltransferase 1 (PtX2AT1) and 3-O-arabinosyltransferase 1 (PtX3AT1), respectively. Two other pine GT61 members were found to be xylan 2-O-xylosyltransferases (PtXYXTs) adding 2-O-ß-Xyl side chains onto xylooligomer acceptors. Furthermore, sequential reactions with PtX3AT1 and the PtGUX1 xylan glucuronyltransferase demonstrated that PtX3AT1 could efficiently arabinosylate glucuronic acid (GlcA)-substituted xylooligomers and likewise, PtGUX1 was able to add GlcA side chains onto 3-O-Araf-substituted xylooligomers. Phylogenetic analysis revealed that PtX2AT1, PtX3AT1 and PtXYXTs resided in three gymnosperm-specific GT61 clades that are separated from the grass-expanded GT61 clade harboring xylan 3-O-arabinosyltransferases and 2-O-xylosyltransferases, suggesting that they might have been recruited independently for xylan substitutions in gymnosperms. Together, our findings have established several pine GT61 members as xylan 2-O- and 3-O-arabinosyltransferases and 2-O-xylosyltransferases and they indicate that pine xylan might also be substituted with 2-O-Araf and 2-O-Xyl side chains.


Asunto(s)
Arabidopsis , Tracheophyta , Cycadopsida , Ácido Glucurónico , Glicosiltransferasas/genética , Filogenia , Xilanos/química
11.
Nat Immunol ; 11(2): 155-61, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20037584

RESUMEN

In atherosclerosis and Alzheimer's disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-beta triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-beta trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-beta stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.


Asunto(s)
Antígenos CD36/inmunología , Inflamación/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 6/inmunología , Péptidos beta-Amiloides/inmunología , Animales , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Western Blotting , Antígenos CD36/metabolismo , Línea Celular , Quimiocinas/biosíntesis , Quimiocinas/inmunología , Expresión Génica , Humanos , Inmunoprecipitación , Inflamación/metabolismo , Lipoproteínas LDL/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/inmunología , Microglía/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 6/metabolismo
12.
J Exp Bot ; 73(13): 4440-4453, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35348679

RESUMEN

The moss Physcomitrium (previously Physcomitrella) patens is a non-vascular plant belonging to the bryophytes that has been used as a model species to study the evolution of plant cell wall structure and biosynthesis. Here, we present an updated review of the cell wall biology of P. patens. Immunocytochemical and structural studies have shown that the cell walls of P. patens mainly contain cellulose, hemicelluloses (xyloglucan, xylan, glucomannan, and arabinoglucan), pectin, and glycoproteins, and their abundance varies among different cell types and at different plant developmental stages. Genetic and biochemical analyses have revealed that a number of genes involved in cell wall biosynthesis are functionally conserved between P. patens and vascular plants, indicating that the common ancestor of mosses and vascular plants had already acquired most of the biosynthetic machinery to make various cell wall polymers. Although P. patens does not synthesize lignin, homologs of the phenylpropanoid biosynthetic pathway genes exist in P. patens and they play an essential role in the production of caffeate derivatives for cuticle formation. Further genetic and biochemical dissection of cell wall biosynthetic genes in P. patens promises to provide additional insights into the evolutionary history of plant cell wall structure and biosynthesis.


Asunto(s)
Briófitas , Bryopsida , Biología , Briófitas/genética , Bryopsida/genética , Bryopsida/metabolismo , Pared Celular/metabolismo , Pectinas/metabolismo , Plantas
13.
Plant Cell Physiol ; 62(1): 53-65, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33764471

RESUMEN

Secondary wall deposition in xylem vessels is activated by Vascular-Related NAC Domain proteins (VNDs) that belong to a group of secondary wall NAC (SWN) transcription factors. By contrast, Xylem NAC Domain1 (XND1) negatively regulates secondary wall deposition in xylem vessels when overexpressed. The mechanism by which XND1 exerts its functions remains elusive. We employed the promoter of the fiber-specific Secondary Wall-Associated NAC Domain1 (SND1) gene to ectopically express XND1 in fiber cells to investigate its mechanism of action on secondary wall deposition. Ectopic expression of XND1 in fiber cells severely diminished their secondary wall deposition and drastically reduced the expression of SWN-regulated downstream transcription factors and secondary wall biosynthetic genes but not that of the SWN genes themselves. Transactivation analyses revealed that XND1 specifically inhibited SWN-activated expression of these downstream genes but not their MYB46-activated expression. Both the NAC domain and the C-terminus of XND1 were required for its inhibitory function and its NAC domain interacted with the DNA-binding domains of SWNs. XND1 was shown to be localized in the cytoplasm and the nucleus and its co-expression with VND6 resulted in the cytoplasmic sequestration of VND6. Furthermore, the C-terminus of XND1 was indispensable for the XND1-mediated cytoplasmic retention of VND6 and its fusion to VND6 was able to direct VND6 to the cytoplasm and render it unable to activate the gene expression. Since the XND1 gene is specifically expressed in xylem cells, these results indicate that XND1 acts through inhibiting VND functions to negatively regulate secondary wall deposition in xylem vessels.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Pared Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Factores de Transcripción/metabolismo , Xilema/fisiología
14.
Plant Cell Physiol ; 62(10): 1589-1602, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34264339

RESUMEN

Xyloglucan is the most abundant hemicellulose in the primary cell walls of dicots. Dicot xyloglucan is the XXXG type consisting of repeating units of three consecutive xylosylated Glc residues followed by one unsubstituted Glc. Its xylosylation is catalyzed by xyloglucan 6-xylosyltransferases (XXTs) and there exist five XXTs (AtXXT1-5) in Arabidopsis. While AtXXT1 and AtXXT2 have been shown to add the first two Xyl residues in the XXXG repeat, which XXTs are responsible for the addition of the third Xyl residue remains elusive although AtXXT5 was a proposed candidate. In this report, we generated recombinant proteins of all five Arabidopsis XXTs and one rice XXT (OsXXT1) in the mammalian HEK293 cells and investigated their ability to sequentially xylosylate Glc residues to generate the XXXG xylosylation pattern. We found that like AtXXT1/2, AtXXT4 and OsXXT1 could efficiently xylosylate the cellohexaose (G6) acceptor to produce mono- and di-xylosylated G6, whereas AtXXT5 was only barely capable of adding one Xyl onto G6. When AtXXT1-catalyzed products were used as acceptors, AtXXT1/2/4 and OsXXT1, but not AtXXT5, were able to xylosylate additional Glc residues to generate tri- and tetra-xylosylated G6. Further characterization of the tri- and tetra-xylosylated G6 revealed that they had the sequence of GXXXGG and GXXXXG with three and four consecutive xylosylated Glc residues, respectively. In addition, we have found that although tri-xylosylation occurred on G6, cello-oligomers with a degree of polymerization of 3 to 5 could only be mono- and di-xylosylated. Together, these results indicate that each of AtXXT1/2/4 and OsXXT1 is capable of sequentially adding Xyl onto three contiguous Glc residues to generate the XXXG xylosylation pattern and these findings provide new insight into the biochemical mechanism underlying xyloglucan biosynthesis.


Asunto(s)
Arabidopsis/genética , Glucanos/metabolismo , Oryza/genética , Pentosiltransferasa/genética , Proteínas de Plantas/genética , Xilanos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células HEK293 , Humanos , Oryza/metabolismo , Pentosiltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Small ; 17(19): e2100135, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33797201

RESUMEN

3D carbon-based materials with multiscale hierarchy are promising electrode materials for electrochemical energy storage and conversion applications, but the synthesis in an efficient and large-scale way is still a great challenge. Herein, a carbon nanorod-assembled 3D superstructure is facilely fabricated by morphology-preserving conversion of a metal-organic framework (MOF) nanorod-assembled superstructure. The MOF superstructure can be fabricated in one-pot synthesis with high reproducibility and high yield by precise control of the MOF nucleation and growth. Its derived carbon inherits the nanorod-assembled superstructure and possesses abundant micropores and nitrogen doping, which can serve as a high-performance anode material for fast potassium storage. The superiority of the superstructure and the synergism of micropore capturing and nitrogen anchoring are verified both experimentally and theoretically.

16.
Planta ; 254(6): 131, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821996

RESUMEN

MAIN CONCLUSION: Multiple rice GT61 members were demonstrated to be xylan arabinosyltransferases (XATs) mediating 3-O-arabinosylation of xylan and the functions of XATs and xylan 2-O-xylosyltransferases were shown to be conserved in grass species. Xylan is the major hemicellulose in the cell walls of grass species and it is typified by having arabinofuranosyl (Araf) substitutions. In this report, we demonstrated that four previously uncharacterized, Golgi-localized glycosyltransferases residing in clade A or B of the rice GT61 family were able to mediate 3-O-arabinosylation of xylan when heterologously expressed in the Arabidopsis gux1/2/3 triple mutant. Biochemical characterization of their recombinant proteins established that they were xylan arabinosyltransferases (XATs) capable of transferring Araf residues onto xylohexaose acceptors, and thus they were named OsXAT4, OsXAT5, OsXAT6 and OsXAT7. OsXAT5 and the previously identified OsXAT2 were shown to be able to arabinosylate xylooligomers with a degree of polymerization of as low as 3. Furthermore, a number of XAT homologs from maize, sorghum, Brachypodium and switchgrass were found to exhibit activities catalyzing Araf transfer onto xylohexaose, indicating that they are XATs involved in xylan arabinosylation in these grass species. Moreover, we revealed that homologs of another GT61 member, xylan 2-O-xylosyltransferase (XYXT1), from these grass species could mediate 2-O-xylosylation of xylan when expressed in the Arabidopsis gux1/2/3 mutant. Together, our findings indicate that multiple OsXATs are involved in 3-O-arabinosylation of xylan and the functions of XATs and XYXTs are conserved in grass species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Pared Celular , Glicosiltransferasas/genética , Xilanos
17.
New Phytol ; 231(4): 1496-1509, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33908063

RESUMEN

Secondary cell wall biosynthesis has been shown to be regulated by a suite of transcription factors. Here, we identified a new xylem vessel-specific NAC domain transcription factor, secondary wall-associated NAC domain protein5 (SND5), in Arabidopsis thaliana and studied its role in regulating secondary wall biosynthesis. We showed that the expression of SND5 and its close homolog, SND4/ANAC075, was specifically associated with secondary wall-containing cells and dominant repression of their functions severely reduced secondary wall thickening in these cells. Overexpression of SND4/5 as well as their homologs SND2/3 fused with the activation domain of the viral protein VP16 led to ectopic secondary wall deposition in cells that are normally parenchymatous. SND2/3/4/5 regulated the expression of the same downstream target genes as do the secondary wall NAC master switches (SWNs) by binding to and activating the secondary wall NAC binding elements (SNBEs). Furthermore, we demonstrated that the poplar (Populus trichocarpa) orthologs of SND2/3/4/5 also activated SNBEs and regulated secondary wall biosynthesis during wood formation. Together, these findings indicate that SND2/3/4/5 and their poplar orthologs regulate the expression of secondary wall-associated genes through activating SNBEs and they are positioned at an upper level in the SWN-mediated transcriptional network.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pared Celular , Populus , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilema/metabolismo
18.
Angew Chem Int Ed Engl ; 60(32): 17314-17336, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124724

RESUMEN

Metal-organic frameworks (MOFs), featuring porous crystalline structures with coordinated metal nodes and organic linkers, have recently found increasing interest in diverse applications. By virtue of their versatile and highly tunable compositions and structures, constructing hollow architectures will further endow MOFs with enhanced properties and designability, exceeding the molecular scale. MOFs could be considered as promising building units to fabricate complex hollow nanocomposites with faster mass transport, multiple active components, more exposed active sites, and better compatibility than bulk MOFs. To construct a promising blueprint for hollow pristine MOFs, this review provides a comprehensive overview for structural design strategies and applications of hollow pristine MOFs. We will highlight the merits, challenges and future potential by structuring and applying MOFs in sensing, separation, storage, catalysis, environmental remediation, photochemical and electrochemical energy conversion. This review might pave a new avenue for future development of novel pristine hollow MOFs.

19.
Plant Cell Physiol ; 61(6): 1064-1079, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167545

RESUMEN

Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.


Asunto(s)
Acetiltransferasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Acetilación , Acetiltransferasas/genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/enzimología , Brachypodium/genética , Catálisis , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Oligosacáridos/metabolismo , Oryza/enzimología , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
20.
Plant Cell Physiol ; 61(1): 64-75, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503286

RESUMEN

Plant cell wall polysaccharides, including xylan, glucomannan, xyloglucan and pectin, are often acetylated. Although a number of acetyltransferases responsible for the acetylation of some of these polysaccharides have been biochemically characterized, little is known about the source of acetyl donors and how acetyl donors are translocated into the Golgi, where these polysaccharides are synthesized. In this report, we investigated roles of ATP-citrate lyase (ACL) that generates cytosolic acetyl-CoA in cell wall polysaccharide acetylation and effects of simultaneous mutations of four Reduced Wall Acetylation (RWA) genes on acetyl-CoA transport into the Golgi in Arabidopsis thaliana. Expression analyses of genes involved in the generation of acetyl-CoA in different subcellular compartments showed that the expression of several ACL genes responsible for cytosolic acetyl-CoA synthesis was elevated in interfascicular fiber cells and induced by secondary wall-associated transcriptional activators. Simultaneous downregulation of the expression of ACL genes was demonstrated to result in a substantial decrease in the degree of xylan acetylation and a severe alteration in secondary wall structure in xylem vessels. In addition, the degree of acetylation of other cell wall polysaccharides, including glucomannan, xyloglucan and pectin, was also reduced. Moreover, Golgi-enriched membrane vesicles isolated from the rwa1/2/3/4 quadruple mutant were found to exhibit a drastic reduction in acetyl-CoA transport activity compared with the wild type. These findings indicate that cytosolic acetyl-CoA generated by ACL is essential for cell wall polysaccharide acetylation and RWAs are required for its transport from the cytosol into the Golgi.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Pared Celular/metabolismo , Citosol/metabolismo , Complejos Multienzimáticos/metabolismo , Oxo-Ácido-Liasas/metabolismo , Polisacáridos/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Acetilcoenzima A/genética , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catárticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos , Aparato de Golgi/metabolismo , Mananos , Pectinas/metabolismo , Xilanos , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA