Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Virus Evol ; 6(1): veaa029, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32411392

RESUMEN

In April 2019, a suspect cluster of enterovirus cases was reported in a neonatology department in Guangdong, China, resulting in five deaths. We aimed to investigate the pathogen profiles in fatal cases, the circulation and transmission pattern of the viruses by combining metatranscriptomic, phylogenetic, and epidemiological analyses. Metatranscriptomic sequencing was used to characterize the enteroviruses. Clinical and environmental surveillance in the local population was performed to understand the prevalence and genetic diversity of the viruses in the local population. The possible source(s), evolution, transmission, and recombination of the viruses were investigated by incorporating genomes from the current outbreak, from local retrospective surveillance, and from public databases. Metatranscriptomic analysis identified Echovirus 11 (E11) in three fatal cases. Seroprevalence of neutralization antibody to E11 was 35 to 44 per cent in 3-15 age groups of general population, and the viruses were associated with various clinical symptoms. From the viral phylogeny, nosocomial transmissions were identified and all E11 2019 outbreak strains were closely related with E11 strains circulating in local population 2017-19. Frequent recombination occurred among the 2019 Guangdong E11 outbreak strains and various genotypes in enterovirus B species. This study provides an example of combining advanced genetic technology and epidemiological surveillance in pathogen diagnosis, source(s), and transmission tracing during an infectious disease outbreak. The result highlights the hidden E11 circulation and the risk of viral transmission and infection in the young age population in China. Frequent recombination between Guangdong-like strains and other enterovirus genotypes also implies the prevalence of these emerging E11 strains.

2.
Biosens Bioelectron ; 75: 301-7, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26332382

RESUMEN

Human cancer is becoming a leading cause of death in the world and the development of a straightforward strategy for early detection of cancer is urgently required. Herein, a sandwich-type electrochemical aptamer cytosensor was developed for detection of human liver hepatocellular carcinoma cells (HepG2) based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. The thiolated TLS11a aptamers were used as a selective bio-recognition element, attached to the gold nanoparticles (AuNPs) modified the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the G-quadruplex/hemin/aptamer complexes and horseradish peroxidase (HRP) immobilized on the surfaces of Au@Pd core-shell nanoparticle-modified magnetic Fe3O4/MnO2 beads (Fe3O4/MnO2/Au@Pd). After the target cells were captured, the hybrid nanoprobes were further assembled to form an aptamer-cell-nanoprobes sandwich-like system on the electrode surface. Then, hybrid Fe3O4/MnO2/Au@Pd nanoelectrocatalysts, G-quadruplex/hemin HRP-mimicking DNAzymes and the natural HRP enzyme efficiently catalyzed the oxidation of hydroquinone (HQ) with H2O2, amplifying the electrochemical signals and improving the detection sensitivity. This electrochemical cytosensor delivered a wide detection range of 1×10(2)-1×10(7)cellsmL(-1), high sensitivity with a low detection limit of 15cellsmL(-1), good selectivity and repeatability. Finally, an electrochemical reductive desorption method was performed to break gold-thiol bond and desorb the components on the AuNPs/GCE for regenerating the cytosensor. These results have demonstrated that the electrochemical cytosensor has the potential to be a feasible tool for cost-effective cancer cell detection in early cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Detección Precoz del Cáncer , Nanopartículas del Metal/química , Neoplasias/diagnóstico , Aptámeros de Nucleótidos/química , Catálisis , G-Cuádruplex , Oro/química , Hemina/química , Células Hep G2 , Humanos , Peróxido de Hidrógeno/química , Límite de Detección
3.
Exp Ther Med ; 12(3): 1908-1914, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27588109

RESUMEN

Clinical studies have indicated that early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with fatal outcomes. Oxidative stress and brain edema are the characteristic pathological events in occurrence EBI following SAH. The present study aimed to examine the effect of 3,4-dihydroxyphenylethanol (DOPET) against SAH-induced EBI, and to demonstrate whether the effect is associated with its potent free radical scavenging property. SAH was induced in rats using an endovascular perforation technique, and 24 h later the rats displayed diminished neurological scores and brain edema. Furthermore, elevated malondialdehyde (an index of lipid peroxidation) and depleted levels of antioxidants were observed in the rat cerebral cortex tissue. Quantitative polymerase chain reaction analysis indicated the upregulated mRNA expression of the apoptotic markers caspase-3 and -9 in the cerebral cortex. Furthermore, the protein expression levels of the proinflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1ß and IL-6 were significantly upregulated in SAH-induced rats. By constrast, treatment with DOPET significantly attenuated EBI by reducing brain edema, elevation of antioxidant status, inhibition of apoptosis and inflammation. In this context, DOPET may be a potent agent in the treatment of EBI following SAH, as a result of its free radical scavenging capacity.

4.
Anal Chim Acta ; 710: 118-24, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123120

RESUMEN

Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 µM (S/N=3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.


Asunto(s)
Técnicas Electroquímicas , Electroforesis por Microchip , Ferrocianuros/química , Grafito/química , Nanotubos de Carbono/química , Electrodos , Hidrazinas/química , Isoniazida/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA