Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(5): e2006582, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33382206

RESUMEN

Glioblastoma is the most common lethal malignant intracranial tumor with a low 5-year survival rate. Currently, the maximal safe surgical resection, followed by high-dose radiotherapy (RT), is a standard treatment for glioblastoma. However, high-dose radiation to the brain is associated with brain injury and results in a high fatality rate. Here, integrated pharmaceutics (named D-iGSNPs) composed of gold sub-nanometer particles (GSNPs), blood-brain barrier (BBB) penetration peptide iRGD, and cell cycle regulator α-difluoromethylornithine is designed. In both simulated BBB and orthotopic murine GL261 glioblastoma models, D-iGSNPs are proved to have a beneficial effect on the BBB penetration and tumor targeting. Meanwhile, data from cell and animal experiments reveal that D-iGSNPs are able to sensitize RT. More importantly, the synergy of D-iGSNPs with low-dose RT can exhibit an almost equal therapeutic effect with that of high-dose RT. This study demonstrates the therapeutic advantages of D-iGSNPs in boosting RT, and may provide a facile approach to update the current treatment of glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Barrera Hematoencefálica , Encéfalo , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Glioblastoma/radioterapia , Oro , Ratones
2.
Part Fibre Toxicol ; 10: 47, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24088372

RESUMEN

BACKGROUND: Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. OBJECTIVES: Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared. METHODS: In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice. RESULTS: All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs. CONCLUSIONS: These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more scientific understandings on the nanotoxicity of amphiphilic polymeric micelles.


Asunto(s)
Portadores de Fármacos/toxicidad , Nanopartículas/toxicidad , Poliésteres/toxicidad , Polietilenglicoles/toxicidad , Tensoactivos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/inmunología , Portadores de Fármacos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Fluidez de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos , Micelas , Estructura Molecular , Nanopartículas/química , Especificidad de Órganos , Tamaño de la Partícula , Poliésteres/química , Polietilenglicoles/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Propiedades de Superficie , Tensoactivos/química , Pruebas de Toxicidad
3.
Biomaterials ; 245: 119986, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229331

RESUMEN

Diabetes is an increasing health problem and associated with inflammatory complications that seriously affects the quality of life and survival of patients. Carbon monoxide (CO), owing to its anti-inflammatory and anti-apoptotic properties, has become a potential therapeutic molecule for the treatment of autoimmune diseases. Here, we constructed a mesoporous silica-based biomimetic CO nanogenerator (mMMn), which was loaded with manganese carbonyl and camouflaged with macrophage membrane. Driven by the active targeting of macrophage membrane to inflammatory sites, the as-designed mMMn could effectively accumulate in pancreatic tissue of type 1 diabetic mice, which was established by consecutive administration of streptozotocin (STZ). It was found that the local reactive oxygen species (ROS) within pancreas could trigger the continuous CO release from mMMn, which greatly ameliorated diabetes in mice with improved blood glucose homeostasis by alleviating inflammatory responses and inhibiting ß-cells apoptosis. The exogenous CO targeting to pancreatic tissue paves a novel way for the treatment of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animales , Apoptosis , Biomimética , Glucemia , Monóxido de Carbono , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Ratones , Calidad de Vida , Estreptozocina
4.
Biomaterials ; 199: 1-9, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30716690

RESUMEN

Although photothermal therapy (PTT) and photodynamic therapy (PDT) are widely commended for tumor treatment recently, they still suffer severe challenges due to the non-specificity of photothermal agents (PTAs)/photosensitizers (PSs) and hypoxic tumor microenvironment. Here, an oxygen independent biomimetic nanoplatform based on carbon sphere dotted with cerium oxide and coated by cell membrane (MCSCe) was designed and synthesized with good biocompatibility, homologous targeting ability, and improved photophysical activity. Notably, MCSCe could realize accumulation of hydrogen peroxide (H2O2) in tumor cells and hyperthermia under single laser (808 nm) irradiation, which were simultaneously utilized by itself to produce more toxic hydroxyl radical (OH). Resultantly, the synergistic therapeutic effect against tumor cells was obtained under near infrared (NIR) laser irradiation.


Asunto(s)
Calor , Radical Hidroxilo/química , Rayos Infrarrojos , Nanoestructuras/química , Neoplasias/terapia , Animales , Materiales Biocompatibles/química , Muerte Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Cerio/química , Endocitosis , Femenino , Humanos , Peróxido de Hidrógeno/química , Rayos Láser , Potencial de la Membrana Mitocondrial , Ratones Endogámicos BALB C , Nanoestructuras/ultraestructura , Neoplasias/patología , Superóxido Dismutasa/metabolismo , Superóxidos/química , Distribución Tisular
5.
Nanoscale ; 11(4): 2027-2036, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30644936

RESUMEN

An innovative tungsten-based multifunctional nanoplatform composed of polyethylene glycol (PEG)-modified tungsten nitride nanoparticles (WN NPs) is constructed for tumor treatment. The PEG-WN NPs not only possess strong near-infrared (NIR) absorbance, high photothermal conversion efficiency, and excellent photothermal stability, but also effectively inhibit tumor cells upon 808 nm laser irradiation. After coating with thiolated (2-hydroxypropyl)-ß-cyclodextrin (MUA-CD) on the surface, such a nanoplatform can also be used for drug delivery (such as DOX) and presents a synergistic tumor inhibition effect both in vitro and in vivo. Furthermore, the PEG-WN NPs present good contrasting capability for X-ray computed tomography (CT) and photoacoustic (PA) imaging. With PA/CT imaging, the tumor can be accurately positioned for precise treatment. It is worth mentioning that PEG-WN NPs are biodegradable and could be effectively excreted from the body with no appreciable toxicity in vivo. It is expected that this biocompatible multifunctional nanoplatform can serve as a potential candidate for tumor treatment in future clinical applications.


Asunto(s)
Nanopartículas del Metal/química , Tungsteno/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Femenino , Hipertermia Inducida , Rayos Láser , Nanopartículas del Metal/toxicidad , Ratones , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Tamaño de la Partícula , Técnicas Fotoacústicas , Fototerapia , Polietilenglicoles/química , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X , beta-Ciclodextrinas/química
6.
Biomaterials ; 223: 119472, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31499254

RESUMEN

Inflammation during photothermal therapy (PTT) of tumor usually results in adverse consequences. Here, a biomembrane camouflaged nanomedicine (mPDAB) containing polydopamine and ammonia borane was designed to enhance PTT efficacy and mitigate inflammation. Polydopamine, a biocompatible photothermal agent, can effectively convert light into heat for PTT. Ammonia borane was linked to the surface of polydopamine through the interaction of hydrogen bonding, which could destroy redox homoeostasis in tumor cells and reduce inflammation by H2 release in tumor microenvironment. Owing to the same origin of outer biomembranes, mPDAB showed excellent tumor accumulation and low systemic toxicity in a breast tumor model. Excellent PTT efficacy and inflammation reduction made the mPDAB completely eliminate the primary tumors, while also restraining the outgrowth of distant dormant tumors. The biomimetic nanomedicine shows potentials as a universal inflammation-self-alleviated platform to ameliorate inflammation-related disease treatment, including but not limited to PTT for tumor.


Asunto(s)
Amoníaco/química , Boranos/química , Neoplasias de la Mama/tratamiento farmacológico , Hidrógeno , Fototerapia/métodos , Animales , Materiales Biocompatibles , Células COS , Chlorocebus aethiops , Femenino , Gases , Células HeLa , Homeostasis , Humanos , Inflamación , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Membranas Artificiales , Ratones , Nanomedicina/métodos , Trasplante de Neoplasias , Oxidación-Reducción , Recurrencia , Temperatura , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA