RESUMEN
A cooperative tertiary amine/palladium-catalyzed sequential reaction process, proceeding via a [4 + 3] cyclization of isatin-derived Morita-Baylis-Hillman Expansion (MBH) carbonates and tert-butyl 2-(hydroxymethyl)allyl carbonates followed by a [1,3]-rearrangement, has been found and developed. A range of structurally diverse spiro[methylene cyclopentane-1,3'-oxindolines] bearing two adjacent ß,γ-acyl quaternary carbon stereocenters, which are difficult to obtain by conventional strategies, were obtained in good yields. Further synthetic utility of this protocol is highlighted by its excellent regio- and stereocontrol as well as the large-scale synthesis and diverse functional transformations of the synthetic compounds. Moreover, the control experiments probably established the plausible mechanism for this sequential [4 + 3] cyclization/[1,3]-rearrangement process.
Asunto(s)
Carbonatos , Paladio , Ciclización , Estructura Molecular , Estereoisomerismo , Catálisis , AminasRESUMEN
Dyslipidemia is a chronic metabolic disease characterized by elevated levels of lipids in plasma. Recently, various studies demonstrate that the increased activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) causes health benefits in energy regulation. Thus, great efforts have been made to develop AMPK activators as a metabolic syndrome treatment. In the present study, we investigated the effects of the AMPK activator C24 on dyslipidemia and the potential mechanisms. We showed that C24 (5-40 µM) dose-dependently increased the phosphorylation of AMPKα and acetyl-CoA carboxylase (ACC), and inhibited lipogenesis in HepG2 cells. Using compound C, an AMPK inhibitor, or hepatocytes isolated from liver tissue-specific AMPK knockout AMPKα1α2fl/fl;Alb-cre mice (AMPK LKO), we demonstrated that the lipogenesis inhibition of C24 was dependent on hepatic AMPK activation. In rabbits with high-fat and high-cholesterol diet-induced dyslipidemia, administration of C24 (20, 40, and 60 mg · kg-1· d-1, ig, for 4 weeks) dose-dependently decreased the content of TG, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma and played a role in protecting against hepatic dysfunction by decreasing lipid accumulation. A lipid-lowering effect was also observed in high-fat and high-cholesterol diet-fed hamsters. In conclusion, our results demonstrate that the small molecular AMPK activator C24 alleviates hyperlipidemia and represents a promising compound for the development of a lipid-lowering drug.