Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783169

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Región CA1 Hipocampal , Regulación hacia Abajo , Plasticidad Neuronal , Neuronas , Complicaciones Cognitivas Postoperatorias , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Neuronas/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Región CA1 Hipocampal/metabolismo , Masculino , Ratones Endogámicos C57BL , Potenciación a Largo Plazo , Ácido Glutámico/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología
2.
BMC Genomics ; 24(1): 344, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349677

RESUMEN

BACKGROUND: Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS: In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS: In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Mariposas Nocturnas , Animales , Proteínas Quinasas Activadas por Mitógenos/genética , Larva , Sistema de Señalización de MAP Quinasas/genética , Mariposas Nocturnas/genética , , Filogenia
3.
J Neurosci ; 40(11): 2332-2342, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32005763

RESUMEN

Emotional disorders are common comorbid conditions that further exacerbate the severity and chronicity of chronic pain. However, individuals show considerable vulnerability to the development of chronic pain under similar pain conditions. In this study on male rat and mouse models of chronic neuropathic pain, we identify the histone deacetylase Sirtuin 1 (SIRT1) in central amygdala as a key epigenetic regulator that controls the development of comorbid emotional disorders underlying the individual vulnerability to chronic pain. We found that animals that were vulnerable to developing behaviors of anxiety and depression under the pain condition displayed reduced SIRT1 protein levels in central amygdala, but not those animals resistant to the emotional disorders. Viral overexpression of local SIRT1 reversed this vulnerability, but viral knockdown of local SIRT1 mimicked the pain effect, eliciting the pain vulnerability in pain-free animals. The SIRT1 action was associated with CaMKIIα downregulation and deacetylation of histone H3 lysine 9 at the CaMKIIα promoter. These results suggest that, by transcriptional repression of CaMKIIα in central amygdala, SIRT1 functions to guard against the emotional pain vulnerability under chronic pain conditions. This study indicates that SIRT1 may serve as a potential therapeutic molecule for individualized treatment of chronic pain with vulnerable emotional disorders.SIGNIFICANCE STATEMENT Chronic pain is a prevalent neurological disease with no effective treatment at present. Pain patients display considerably variable vulnerability to developing chronic pain, indicating individual-based molecular mechanisms underlying the pain vulnerability, which is hardly addressed in current preclinical research. In this study, we have identified the histone deacetylase Sirtuin 1 (SIRT1) as a key regulator that controls this pain vulnerability. This study reveals that the SIRT1-CaMKIIaα pathway in central amygdala acts as an epigenetic mechanism that guards against the development of comorbid emotional disorders under chronic pain, and that its dysfunction causes increased vulnerability to the development of chronic pain. These findings suggest that SIRT1 activators may be used in a novel therapeutic approach for individual-based treatment of chronic pain.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Núcleo Amigdalino Central/fisiopatología , Dolor Crónico/fisiopatología , Distrés Psicológico , Sirtuina 1/fisiología , Neuralgia del Trigémino/fisiopatología , Acetilación , Animales , Ansiedad/etiología , Ansiedad/fisiopatología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Núcleo Amigdalino Central/enzimología , Dolor Crónico/psicología , Depresión/etiología , Depresión/fisiopatología , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Conducta Exploratoria , Neuronas GABAérgicas/enzimología , Vectores Genéticos , Histonas/metabolismo , Hiperalgesia/fisiopatología , Masculino , Ratones , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Natación , Transcripción Genética , Neuralgia del Trigémino/psicología
5.
J Immunol ; 193(5): 2157-67, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25063874

RESUMEN

Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation.


Asunto(s)
Movimiento Celular/inmunología , Quimiocina CCL2/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células TH1/inmunología , Células Th17/inmunología , Deficiencia de Tiamina/inmunología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Ratones , Microglía/inmunología , Microglía/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/toxicidad , Ratas , Médula Espinal/inmunología , Médula Espinal/patología , Bazo/inmunología , Bazo/patología , Células TH1/patología , Células Th17/patología , Deficiencia de Tiamina/complicaciones , Deficiencia de Tiamina/patología
6.
Cell Physiol Biochem ; 35(1): 315-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25591773

RESUMEN

BACKGROUND: Previous studies have shown ketamine can alter the proliferation and differentiation of neural stem cells (NSCs) in vitro. However, these effects have not been entirely clarified in vivo in the subventricular zone (SVZ) of neonatal rats. The present study was designed to investigate the effects of ketamine on the proliferation and differentiation of NSCs in the SVZ of neonatal rats in vivo. METHODS: Postnatal day 7 (PND-7) male Sprague-Dawley rats were administered four injections of 40 mg/kg ketamine at 1-h intervals, and then 5-bromodeoxyuridine (BrdU) was injected intraperitoneally at PND-7, 9 and 13. NSC proliferation was assessed with Nestin/BrdU double-labeling immunostaining. Neuronal and astrocytic differentiation was evaluated with ß-tubulin III/BrdU and GFAP/BrdU double-labeling immunostaining, respectively. The expressions of nestin, ß-tubulin III and GFAP were measured using Western blot analysis. The apoptosis of NSCs and astrocytes in the SVZ of neonatal rats was evaluated using nestin/caspase-3 and GFAP/caspase-3 double-labeling immunostaining. RESULTS: Neonatal ketamine exposure significantly reduced the number of nestin/BrdU and GFAP/BrdU double-positive cells in the SVZ. Meanwhile, the expressions of nestin and GFAP in the SVZ from the ketamine group were significantly decreased compared those in the control group. Still, no double-positive cells for nestin/caspase-3 and GFAP/caspase-3 were found after ketamine exposure. In addition, the neuronal differentiation of NSCs in the SVZ was markedly promoted by ketamine with an increased number of ß-tubulin III/BrdU double-positive cells and enhanced expression of ß-tubulin III. These effects of ketamine on the NSCs in the SVZ often lasted at least 1 week after ketamine anesthesia. CONCLUSION: In the present study, it was demonstrated that ketamine could alter neurogenesis by inhibiting the proliferation of NSCs, suppressing their differentiation into astrocytes and promoting the neuronal differentiation of the NSCs in the SVZ of neonatal rats during a critical period of their neurodevelopment.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ketamina/farmacología , Ventrículos Laterales/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos/inmunología , Apoptosis/efectos de los fármacos , Astrocitos/citología , Caspasa 3/inmunología , Caspasa 3/metabolismo , Ventrículos Laterales/citología , Masculino , Nestina/inmunología , Nestina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Tubulina (Proteína)/inmunología , Tubulina (Proteína)/metabolismo
7.
Anesth Analg ; 120(6): 1361-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25695672

RESUMEN

BACKGROUND: In this study, we investigated the effect of propofol, a commonly used IV anesthetic, on lipopolysaccharide (LPS)-induced inflammatory responses in astrocytes and explored the molecular mechanisms by which it occurs. METHODS: Astrocytes were stimulated with LPS (1.0 µg/mL) in the absence and presence of different concentrations of propofol. The expression of astrocyte marker glial fibrillary acidic protein (GFAP) in astrocytes was detected using immunofluorescence staining and Western blot analysis. The levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α were measured using an enzyme-linked immunosorbent assay. The mRNA level of Toll-like receptor 4 (TLR4) was determined by semiquantitative reverse transcriptase-polymerase chain reaction. The protein expressions of TLR4, myeloid differentiation factor 88 (MyD88), p- extracellular signal-regulated protein kinases (ERK)1/2, p-c-Jun N-terminal kinase, p-p38 mitogen-activated protein kinase (MAPK), p-I-κBα, I-κBα, and p-nuclear factor-κB (NF-κB)p65 were detected by Western blot. RESULTS: Our results show that after stimulation with LPS, the levels of IL-1ß, IL-6, and tumor necrosis factor-α and the expression of GFAP in astrocytes were up-regulated significantly. In addition, the expression of TLR4, MyD88, p-ERK1/2, p-c-Jun N-terminal kinase, p-p38 MAPK, and p-NF-κBp65 increased, whereas the expression of total I-κBα decreased upon stimulation with LPS. Propofol (10 µM) reduced the secretion of proinflammatory cytokines, inhibited the expressions of GFAP, TLR4, MyD88, p-ERK1/2, p-p38 MAPK, and p-NF-κBp65 in astrocytes challenged with LPS. CONCLUSIONS: In the present study, propofol 10 µM but not lower clinically relevant or higher supra-clinical concentrations attenuated LPS-induced astrocyte activation and subsequent inflammatory responses by inhibiting the TLR4/MyD88-dependent NF-κB, ERK1/2, and p38 MAPK pathways.


Asunto(s)
Antiinflamatorios/farmacología , Astrocitos/efectos de los fármacos , Lipopolisacáridos/toxicidad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Fármacos Neuroprotectores/farmacología , Propofol/farmacología , Receptor Toll-Like 4/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/enzimología , Astrocitos/inmunología , Células Cultivadas , Citocinas/metabolismo , Citoprotección , Relación Dosis-Respuesta a Droga , Proteína Ácida Fibrilar de la Glía/metabolismo , Mediadores de Inflamación/metabolismo , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
8.
Cell Physiol Biochem ; 34(5): 1792-801, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25427956

RESUMEN

BACKGROUND/AIMS: Ketamine is a widely used anesthetic in obstetric and pediatric anesthesia. In the developing brain, the widespread neuron apoptosis triggered by ketamine has been demonstrated. However, little is known about its effect on neural stem cells (NSCs) function. This study aimed to investigate the effect of ketamine on proliferation of NSCs from neonatal rat hippocampus. METHODS: Neural stem cells were isolated from the hippocampus of Sprague-Dawley rats on postnatal day 3. In dose-response experiments, cultured neural stem cells (NSCs) were exposed to different concentrations of ketamine (0-1000 µM) for 24 hrs. The proliferative activity of NSCs was evaluated by 5-Bromo-2'-deoxyuridine (BrdU) incorporation assay. Apoptosis of neural stem cells were assessed using caspase-3 by western blot. The intracellular Ca(2+) concentration ([Ca(2+)]i) in NSCs was analyzed by flow cytometry. The activation of protein kinase C-α (PKCα) and the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) were measured by western blot analysis. RESULTS: Clinical relevant concentration of ketamine (10, 20 and 50 µM) did not markedly alter the proliferation of NSCs from neonatal rat hippocampus in vitro. However, ketamine (200, 500, 800 and 1000µM) significantly inhibited the proliferation of NSCs and did not affect the expression of caspase-3. Meanwhile, ketamine (200, 500, 800 and 1000µM) also markedly decreased [Ca(2+)]i as well as suppressed PKCα activation and ERK1/2 phosphorylation in NSCs. A combination of subthreshold concentrations of ketamine (100 µM) and Ca(2+) channel blocker verapamil (2.5 µM), PKCα inhibitor chelerythrine (2.5 µM) or ERK1/2 kinase inhibitor PD98059 (5 µM) significantly produced suprathreshold effects on PKCα activation, ERK1/2 phosphorylation and NSC proliferation. CONCLUSION: Ketamine inhibited proliferation of NSCs from neonatal rat hippocampus in vitro. Suppressing Ca(2+)-PKCα-ERK1/2 signaling pathway may be involved in this inhibitory effect of ketamine on NSCs proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ketamina/farmacología , Células-Madre Neurales/efectos de los fármacos , Animales , Animales Recién Nacidos/metabolismo , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Caspasa 3/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células-Madre Neurales/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
9.
Anesth Analg ; 118(5): 1090-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24686047

RESUMEN

BACKGROUND: Cysteinyl leukotrienes and their receptors have been shown to be involved in the generation of neuropathic pain. We performed this study to determine the antagonistic effect of montelukast, a cysteinyl leukotrienes receptor antagonist, on neuropathic pain and its underlying mechanism. METHODS: Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After CCI, rats were repeatedly administered montelukast (0.5, 1.0, and 2.0 mg/kg intraperitoneal, once daily) for a period of 14 days. Mechanical withdrawal threshold and thermal withdrawal latency were assessed before surgery and on days 1, 3, 5, 7, and 14 after CCI. The levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the spinal cord were determined by enzyme-linked immunosorbent assay. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) and activation of nuclear factor-kappaB (NF-κB) were assessed by Western blot. The expression of astrocyte marker glial fibrillary acidic protein and microglia marker Iba-1 and the coexpression of p-p38MAPK and Iba-1 or NF-κB and Iba-1 were observed by immunofluorescent staining. RESULTS: The CCI group displayed significantly decreased mechanical withdrawal threshold and thermal withdrawal latency on days 1, 3, 5, 7 and 14 compared with sham groups (P <0.05, P < 0.0001), which were markedly increased by montelukast (P < 0.05, P < 0.01, P <0.0001). After administration with montelukast for 14 days, as biological markers of inflammation, the levels of IL-1ß (P < 0.0001), IL-6 (P = 0.001 for low dosage, P < 0.0001 for middle and high dosages), and TNF-α (P =0.002, 0.001, < 0.0001 for low, middle, and high dosage, respectively) in the spinal cord were lower than those in the CCI group. Western blot analysis demonstrated that montelukast reduced the elevated expression of p-p38 MAPK (P =0.006, 0.015, < 0.0001 for low, middle, and high dosage, respectively) and NF-κB (P < 0.0001) in the spinal cord induced by CCI. Immunofluorescent staining showed that montelukast could inhibit CCI-induced activation of microglia but not astrocytes in the spinal cord. In addition, montelukast (2.0 mg/kg) significantly decreased the number of p38MAPK and Iba-1 or NF-κBp65 and Iba-1 double-positive cells. CONCLUSIONS: These results suggest that montelukast could effectively attenuate neuropathic pain in CCI rats by inhibiting the activation of p38MAPK and NF-κB signaling pathways in spinal microglia.


Asunto(s)
Acetatos/uso terapéutico , Antagonistas de Leucotrieno/uso terapéutico , FN-kappa B/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Quinolinas/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Acetatos/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Western Blotting , Enfermedad Crónica , Constricción Patológica , Ciclopropanos , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Calor , Interleucinas/metabolismo , Antagonistas de Leucotrieno/farmacología , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuralgia/etiología , Fosforilación , Estimulación Física , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sulfuros , Factor de Necrosis Tumoral alfa/metabolismo
10.
Gels ; 10(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247795

RESUMEN

With the gradual deepening of the exploration and development of deep and ultra-deep oil and gas resources, the problem of lost circulation in drilling operations is becoming more and more complex. From field experience, conventional plugging materials cannot fully meet the technical requirements of plugging operations in drilling engineering. In this study, a high-temperature- and salt-resistant polymer HDZ-A was synthesized. A high-temperature and delayed crosslinking polymer gel plugging agent can be prepared by adding a certain concentration of a crosslinking agent and a retarder. In this paper, the optimum synthesis conditions of the HDZ-A were determined with orthogonal experiments using viscoelasticity and viscosity as evaluation criteria for newly developed polymers. The molecular structure, temperature resistance, and relative molecular mass of HDZ-A were determined using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. In addition, the optimal formula of the gel plugging agent was determined using gel strength as the evaluation standard. The results show that the newly developed gel plugging agent has stable performance after high-temperature crosslinking, and can resist high temperatures of 160 °C during formation. Under conditions of 160 °C, the gelation time can reach 4.5 h, and the plugging efficiency can reach more than 97%. Finally, the field test of the newly developed high-temperature-resistant delayed crosslinking polymer gel plugging agent was carried out in the direct exploration well KT-14X in the Ordos Basin. The field test showed that the plugging effect of the HDZ-A gel plugging agent was remarkable.

11.
Gels ; 10(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391442

RESUMEN

Deep wells and ultra-deep wells often encounter cracks, karst caves, and other developed strata, which can lead to leakage during drilling. Conventional bridge slurry plugging technology is prone to leaking due to the poor plugging effect of the plugging agent. The gel plugging agent possesses characteristics of flexible plugging and adaptive matching of formation leakage channels. It can fill cracks or caves and enhance the pressure-bearing capacity of the formation. A controllable crosslinking plugging agent based on low-molecular-weight polyacrylamide was studied. Polyacrylamide with different molecular weights is synthesized from acrylamide and an initiator. A crosslinking time-controllable polymer is synthesized from low-molecular-weight polyacrylamide by adding crosslinking agent and retarder. The low-molecular-weight polyacrylamide plugging agent has low viscosity before gelation and good fluidity in the wellbore. After being configured on the ground, it is transported by pipeline and sent underground to reach the thickening condition. The gel solution rapidly solidifies, and its strength improves after high-temperature crosslinking. The synthesis conditions of the polymer were as follows: a monomer concentration of 9%, initiator 3.5%, synthesis temperature of 65 °C, and hydrogen peroxide initiator. The optimal formula of the gel plugging agent is as follows: a polymer concentration of 6%, a crosslinking agent concentration of 1%, and a retarder concentration of 8%. The generated polymer molecular structure contains amide groups. This crosslinking time-controllable plugging agent based on low-molecular-weight polyacrylamide has stable rheology, and its temperature resistance can reach 150 °C. At 150 °C, the gelation time can be controlled by adjusting the concentration of retarder, and the longest can reach 4 h. The plugging efficiency of the gel plugging agent is more than 95%. With the increase in seam width, the pressure of the gel plugging agent gradually decreases.

12.
Ageing Res Rev ; 99: 102363, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838785

RESUMEN

The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.


Asunto(s)
Trastornos Mentales , Humanos , Trastornos Mentales/fisiopatología , Trastornos Mentales/terapia , Animales , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/fisiopatología
13.
Insects ; 15(1)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276822

RESUMEN

Tetranychus urticae is a highly polyphagous and global pest. Spider mites primarily feed on the underside of leaves, resulting in decreased photosynthesis, nutritional loss, and the development of chlorotic patches. We investigated the life tables of the two-spotted spider mite T. urticae on fungal endophyte Beauveria bassiana colonized and untreated plants of the common Phaseolus vulgaris L., a bean plant. Based on the age-stage, two-sex life table theory, data were evaluated. The mites raised on untreated plants had protonymphs, deutonymphs, and total pre-adult stage durations that were considerably shorter (1.76, 2.14, and 9.77 d, respectively) than the mites raised on plants that had been colonized (2.02, 2.45, and 10.49 d, respectively). The fecundity (F) varied from 28.01 eggs per female of colonized plants to 57.67 eggs per female of endophyte-untreated plants. The net reproductive rate (R0) in the plants with and without endophytes was 19.26 and 42.53 brood, respectively. The untreated plants had an intrinsic rate of increase (rm) of 0.245 days as opposed to the colonized plants, which had an r of 0.196 days and a finite rate of increase (λ) (1.27 and 1.21, respectively). Population forecasts based on a two-sex, age-stage life table demonstrated the dynamism and variability of the stage structure. Furthermore, the colonization of B. bassiana had a negative impact on the growth and development of T. urticae. It lowered the adult mite life span, female fecundity, net reproduction rate, and intrinsic growth rate. We propose that future research should better use entomopathogenic fungal endophytes to understand host plant resistance strategies in integrated pest management.

14.
Int Immunopharmacol ; 126: 111295, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38048668

RESUMEN

Immune dysfunction is one of the leading causes of death of sepsis. How to regulate host immune functions to improve prognoses of septic patients has always been a clinical focus. Here we elaborate on the efficacy and potential mechanism of a classical drug, thymopentin (TP5). TP5 could decrease peritoneal bacterial load, and reduce inflammatory cytokine levels both in the peritoneal lavage fluid (PLF) and serum, alleviate pathological injuries in tissue and organ, coaxed by cecal ligation and perforation (CLP) in mice, ultimately improve the prognosis of septic mice. Regarding the mechanism, using RNA-seq and flow cytometry, we found that TP5 induced peptidoglycan recognition protein 1 (PGLYRP1) expression, increased phagocytosis and restored TNF-α expression of small peritoneal macrophage (SPM) in the septic mice. This may be increased SPM's ability to clear peritoneal bacteria, thereby attenuates the inflammatory response both in the peritoneal cavity and the serum. It was shown that TP5 plays a key role in restoring the function of peritoneal macrophages to alleviate the sepsis process. We reckon that this is closely relevant to SPM phagocytosis, which might involve increased PGLYRP1 expression and restored TNF-α secretion.


Asunto(s)
Sepsis , Timopentina , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo
15.
Mol Neurobiol ; 61(8): 5459-5480, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38200350

RESUMEN

The mechanism of ketamine-induced neurotoxicity development remains elusive. Mitochondrial fusion/fission dynamics play a critical role in regulating neurogenesis. Therefore, this study was aimed to evaluate whether mitochondrial dynamics were involved in ketamine-induced impairment of neurogenesis in neonatal rats and long-term synaptic plasticity dysfunction. In the in vivo study, postnatal day 7 (PND-7) rats received intraperitoneal (i.p.) injection of 40 mg/kg ketamine for four consecutive times at 1 h intervals. The present findings revealed that ketamine induced mitochondrial fusion dysfunction in hippocampal neural stem cells (NSCs) by downregulating Mitofusin 2 (Mfn2) expression. In the in vitro study, ketamine treatment at 100 µM for 6 h significantly decreased the Mfn2 expression, and increased ROS generation, decreased mitochondrial membrane potential and ATP levels in cultured hippocampal NSCs. For the interventional study, lentivirus (LV) overexpressing Mfn2 (LV-Mfn2) or control LV vehicle was microinjected into the hippocampal dentate gyrus (DG) 4 days before ketamine administration. Targeted Mfn2 overexpression in the DG region could restore mitochondrial fusion in NSCs and reverse the inhibitory effect of ketamine on NSC proliferation and its faciliatory effect on neuronal differentiation. In addition, synaptic plasticity was evaluated by transmission electron microscopy, Golgi-Cox staining and long-term potentiation (LTP) recordings at 24 h after the end of the behavioral test. Preconditioning with LV-Mfn2 improved long-term cognitive dysfunction after repeated neonatal ketamine exposure by reversing the inhibitory effect of ketamine on synaptic plasticity in the hippocampal DG. The present findings demonstrated that Mfn2-mediated mitochondrial fusion dysfunction plays a critical role in the impairment of long-term neurocognitive function and synaptic plasticity caused by repeated neonatal ketamine exposure by interfering with hippocampal neurogenesis. Thus, Mfn2 might be a novel therapeutic target for the prevention of the developmental neurotoxicity of ketamine.


Asunto(s)
Animales Recién Nacidos , Cognición , GTP Fosfohidrolasas , Hipocampo , Ketamina , Dinámicas Mitocondriales , Células-Madre Neurales , Neurogénesis , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Anestesia/efectos adversos , Cognición/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ketamina/administración & dosificación , Ketamina/efectos adversos , Ketamina/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos
16.
Synapse ; 67(12): 865-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23813456

RESUMEN

Our previous and other studies have confirmed that a selective M1 and M3 receptor antagonist, Penehyclidine hydrochloride (PHC), has neuroprotection activity in cerebral ischemia. However, the precise mechanisms of protection of PHC are still elusive. In this study we analyzed PHC-mediated neuroprotection on a model of brain ischemia (oxygen and glucose deprivation), named postischemic LTP (i-LTP). We found that the activation of NMDA receptor was required for the induction of i-LTP. Compared with scopolamine, PHC could prevent it due to selectively blocking M1 receptor, not M2 receptor, to decrease NMDAR activation. Our findings further showed that the inhibition of SK2 channels occluded the prevention of PHC on NMDAR activation. Furthermore, we confirmed that PHC exerted its roles through directly disinhibition of SK2 channels by blocking M1 receptor and subsequent restricting PKC activation. Moreover, our studies further revealed the critical roles of SK2 channels in i-LTP. Thus, the mechanisms of PHC in brain protection may be involved in suppression of NMDAR by regulation of SK2 channels. Our results obtained in effects of PHC on i-LTP further provided a better understanding of the therapy strategy during stroke and identified potential therapeutic targets to prevent development of ischemia.


Asunto(s)
Isquemia Encefálica/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Quinuclidinas/farmacología , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M3/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Bloqueadores de los Canales de Potasio/farmacología , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Escopolamina/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores
17.
Mediators Inflamm ; 2013: 562154, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23690665

RESUMEN

Dexmedetomidine has been reported to reduce mortality in septic rats. This study was designed to investigate the effects of dexmedetomidine on inflammatory reaction in lung tissues of septic rats induced by CLP. After induction of sepsis, the rats were treated with normal saline or dexmedetomidine (5, 10, or 20 µg/kg). The survival rate of septic rats in 24 h was recorded. The inflammation of lung tissues was evaluated by HE stain. The concentrations of IL-6 and TNF- α in BALF and plasma were measured by ELISA. The expressions of TLR4 and MyD88 were measured by western blotting. The activation of NF-κB in rat lung tissues was assessed by western blotting and immunohistochemistry. It was found that the mortality rate and pulmonary inflammation were significantly increased in septic rats. IL-6 and TNF-α levels in BALF and plasma, NF-κB activity, and TLR4/MyD88 expression in rat lung tissues were markedly enhanced after CLP. Dexmedetomidine (10 and 20 µg/kg) significantly decreased mortality and pulmonary inflammation of septic rats, as well as suppressed CLP-induced elevation of TNF- α and IL-6 and inhibited TLR4/MyD88 expression and NF-κB activation. These results suggest that dexmedetomidine may decrease mortality and inhibit inflammatory reaction in lung tissues of septic rats by suppressing TLR4/MyD88/NF-κB pathway.


Asunto(s)
Dexmedetomidina/uso terapéutico , Pulmón/inmunología , Pulmón/metabolismo , FN-kappa B/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Pain ; 24(3): 449-462, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36257574

RESUMEN

Chronic pain is frequently comorbid with depression. However, the mechanisms underlying chronic pain-induced depression remain unclear. Here, we found that DNA methyltransferase 1 (DNMT1) was upregulated in the central amygdala (CeA) of spared nerve injury (SNI)-induced chronic pain-depression rats, and knockdown of DNMT1 could improve the depression-like behaviors in SNI rats. Additionally, a panel of differentially expressed lncRNAs, including 38 upregulated and 12 downregulated lncRNAs, were identified by microarray analysis. Bioinformatics analysis suggested that the upregulated lncRNA XR_351665 was the upstream molecule to regulate DNMT1 expression. The knockdown of XR_351665 significantly alleviated the depression-like behaviors in SNI rats, whereas overexpression of XR_351665 induced the depression-like behaviors in naïve rats. Further mechanism-related researches uncovered that XR_351665 functioned as a competing endogenous RNA (ceRNA) to upregulate DNMT1 by competitively sponging miR-152-3p, and subsequently promoted the development of chronic pain-induced depression. Our findings suggest that lncRNA XR_351665 is involved in the development of chronic pain-induced depression by upregulating DNMT1 via sponging miR-152-3p. These data provide novel insight into understanding the pathogenesis of chronic pain-induced depression and identify a potential therapeutic target. PERSPECTIVE: LncRNA XR_351665 in CeA functions as a ceRNA to block the inhibitory effect of miR-152-3p on DNMT1 and contributes to the development of chronic pain-induced depression. These data suggest that manipulation of XR_351665/miR-152-3p/DNMT1 axis may be a potential method to attenuate chronic pain-induced depression.


Asunto(s)
Dolor Crónico , MicroARNs , ARN Largo no Codificante , Ratas , Animales , MicroARNs/genética , Depresión , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Comorbilidad
19.
Biol Psychiatry ; 94(8): 672-684, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001844

RESUMEN

BACKGROUND: Chronic pain can induce depressive emotion. DNA methyltransferases (DNMTs) have been shown to be involved in the development of chronic pain and depression. However, the role and mechanism of DNMTs in chronic pain-induced depression are not well understood. METHODS: In well-established spared nerve injury (SNI)-induced chronic pain-related depression models, the expression of DNMTs and the functional roles and underlying mechanisms of DNMT1 in central amygdala (CeA) GABAergic (gamma-aminobutyric acidergic) neurons were investigated using molecular, pharmacological, electrophysiological, optogenetic, and chemogenetic techniques and behavioral tests. RESULTS: DNMT1, but not DNMT3a or DNMT3b, was upregulated in the CeA of rats with SNI-induced chronic pain-depression. Inhibition of DNMT1 by 5-Aza or viral knockdown of DNMT1 in GABAergic neurons in the CeA effectively ameliorated the depression-like behaviors induced by chronic pain. The DNMT1 action was associated with methylation at the CpG-rich Gad1 promoter and GAD67 downregulation, leading to a decrease of GABAergic neuronal activity. Optogenetic activation of GABAergic neurons in the CeA improved SNI-induced depression-like behaviors. Moreover, optogenetic or chemogenetic inhibition of GABAergic neurons in the CeA reversed DNMT1 knockdown-induced improvement of depression-like behaviors in SNI mice. CONCLUSIONS: Our findings suggest that DNMT1 is involved in the development of chronic pain-related depression by epigenetic repression of GAD67, leading to the inhibition of GABAergic neuronal activation. This study indicates that DNMT1 could be a potential target for the treatment of chronic pain-related depression.


Asunto(s)
Núcleo Amigdalino Central , Dolor Crónico , Animales , Ratones , Ratas , Núcleo Amigdalino Central/metabolismo , Depresión , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
20.
Chin Med J (Engl) ; 136(6): 690-706, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939254

RESUMEN

BACKGROUND: Heterogeneity of tumor cells and the tumor microenvironment (TME) is significantly associated with clinical outcomes and treatment responses in patients with urothelial carcinoma (UC). Comprehensive profiling of the cellular diversity and interactions between malignant cells and TME may clarify the mechanisms underlying UC progression and guide the development of novel therapies. This study aimed to extend our understanding of intra-tumoral heterogeneity and the immunosuppressive TME in UC and provide basic support for the development of novel UC therapies. METHODS: Seven patients with UC were included who underwent curative surgery at our hospital between July 2020 and October 2020. We performed single-cell RNA sequencing (scRNA-seq) analysis in seven tumors with six matched adjacent normal tissues and integrated the results with two public scRNA-seq datasets. The functional properties and intercellular interactions between single cells were characterized, and the results were validated using multiplex immunofluorescence staining, flow cytometry, and bulk transcriptomic datasets. All statistical analyses were performed using the R package with two-sided tests. Wilcoxon-rank test, log-rank test, one-way analysis of variance test, and Pearson correlation analysis were used properly. RESULTS: Unsupervised t-distributed stochastic neighbor embedding clustering analysis identified ten main cellular subclusters in urothelial tissues. Of them, seven urothelial subtypes were noted, and malignant urothelial cells were characterized with enhanced cellular proliferation and reduced immunogenicity. CD8 + T cell subclusters exhibited enhanced cellular cytotoxicity activities along with increased exhaustion signature in UC tissues, and the recruitment of CD4 + T regulatory cells was also increased in tumor tissues. Regarding myeloid cells, coordinated reprogramming of infiltrated neutrophils, M2-type polarized macrophages, and LAMP3 + dendritic cells contribute to immunosuppressive TME in UC tissues. Tumor tissues demonstrated enhanced angiogenesis mediated by KDR + endothelial cells and RGS5 + /ACTA2 + pericytes. Through deconvolution analysis, we identified multiple cellular subtypes may influence the programmed death-ligand 1 (PD-L1) immunotherapy response in patients with UC. CONCLUSION: Our scRNA-seq analysis clarified intra-tumoral heterogeneity and delineated the pro-tumoral and immunosuppressive microenvironment in UC tissues, which may provide novel therapeutic targets.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Transcriptoma/genética , Células Endoteliales , Neoplasias de la Vejiga Urinaria/genética , Linfocitos T CD8-positivos , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA