Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 29(21): 34735-34747, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809256

RESUMEN

Electromagnetic (EM) wave absorber with broad and robust absorption performance over wide incident angle range is persistently desired in specific applications. In this work, we propose and demonstrate a broadband and wide-angle metamaterial absorber (MA) based on a hybrid of stereo spoof surface plasmonic polariton (SSPP) structure and planar resistive metasurface. At first, we design a broadband SSPP absorber by adjusting the dispersion and loss of the artificial plasmonic structure (PS) simultaneously. Furthermore, owing to utilize its spatial phase manipulation ability, we integrate a resistive metasurface on top of the PS to construct a modified circuit analog (CA) absorber with a dispersive metamaterial spacer. The absorption mechanism of the hybrid structure is analyzed theoretically. The results indicate that the hybrid MA is equipped with broad and robust absorption performance over a wide incident angle range due to the synergistic absorption of the PS and metasurface. Finally, a prototype of the hybrid MA is fabricated by silk-printing technic and its absorption performances are measured. The experimental results can verify the theoretic ones and indicate that proposed hybrid MA can achieve 90% absorptivity from 3.9 GHz to 10.6 GHz with thickness of 7.0 mm, which is only 106% times of the ultimate thickness corresponding to the absorption performance of MA. In general, the concept and design offer a distinct approach of utilizing SSPP to design absorbers with excellent performances from radio frequency to optic band, which are promising for extensive applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA