Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.322
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(23): 4347-4360.e17, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36335936

RESUMEN

Decoration of cap on viral RNA plays essential roles in SARS-CoV-2 proliferation. Here, we report a mechanism for SARS-CoV-2 RNA capping and document structural details at atomic resolution. The NiRAN domain in polymerase catalyzes the covalent link of RNA 5' end to the first residue of nsp9 (termed as RNAylation), thus being an intermediate to form cap core (GpppA) with GTP catalyzed again by NiRAN. We also reveal that triphosphorylated nucleotide analog inhibitors can be bonded to nsp9 and fit into a previously unknown "Nuc-pocket" in NiRAN, thus inhibiting nsp9 RNAylation and formation of GpppA. S-loop (residues 50-KTN-52) in NiRAN presents a remarkable conformational shift observed in RTC bound with sofosbuvir monophosphate, reasoning an "induce-and-lock" mechanism to design inhibitors. These findings not only improve the understanding of SARS-CoV-2 RNA capping and the mode of action of NAIs but also provide a strategy to design antiviral drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN , Antivirales/química , Nucleótidos/química , Proteínas no Estructurales Virales/metabolismo
2.
Cell ; 180(3): 440-453.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032516

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.


Asunto(s)
Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/efectos de la radiación , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Terapia por Láser/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/efectos de la radiación , Microscopía Confocal , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de la radiación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Receptores de Reconocimiento de Patrones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Imagen de Lapso de Tiempo
3.
Cell ; 170(5): 1028-1043.e19, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841410

RESUMEN

Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human ß-globin genes establishes evidence for composition-based hierarchical organization. Furthermore, unbiased analysis of chromatin interactions at disease-associated cis-elements and developmentally regulated super-enhancers reveals spatial features that causally control gene transcription. Thus, comprehensive and unbiased analysis of locus-specific regulatory composition provides mechanistic insight into genome structure and function in development and disease.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Técnicas Genéticas , Elementos Reguladores de la Transcripción , Animales , Biotinilación , Células Cultivadas , Células Madre Embrionarias/metabolismo , Endonucleasas/genética , Elementos de Facilitación Genéticos , Humanos , Células K562 , Ratones , ARN Guía de Kinetoplastida/metabolismo , Telómero/metabolismo , Globinas beta/genética
4.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890086

RESUMEN

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Asunto(s)
Prurito/inmunología , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Enfermedades de la Piel/inmunología , Animales , Ganglios Espinales , Humanos , Interleucina-13/inmunología , Interleucina-4/inmunología , Janus Quinasa 1/metabolismo , Ratones , Ratones Endogámicos C57BL , Prurito/metabolismo , Enfermedades de la Piel/patología
5.
Nature ; 626(7998): 427-434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081299

RESUMEN

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Transporte Vesicular de Monoaminas , Humanos , Sitios de Unión , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacología , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacología , Serotonina/química , Serotonina/metabolismo , Especificidad por Sustrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Monoaminas/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/ultraestructura
6.
Nature ; 605(7911): 761-766, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585240

RESUMEN

Diabetes mellitus is prevalent among women of reproductive age, and many women are left undiagnosed or untreated1. Gestational diabetes has profound and enduring effects on the long-term health of the offspring2,3. However, the link between pregestational diabetes and disease risk into adulthood in the next generation has not been sufficiently investigated. Here we show that pregestational hyperglycaemia renders the offspring more vulnerable to glucose intolerance. The expression of TET3 dioxygenase, responsible for 5-methylcytosine oxidation and DNA demethylation in the zygote4, is reduced in oocytes from a mouse model of hyperglycaemia (HG mice) and humans with diabetes. Insufficient demethylation by oocyte TET3 contributes to hypermethylation at the paternal alleles of several insulin secretion genes, including the glucokinase gene (Gck), that persists from zygote to adult, promoting impaired glucose homeostasis largely owing to the defect in glucose-stimulated insulin secretion. Consistent with these findings, mouse progenies derived from the oocytes of maternal heterozygous and homozygous Tet3 deletion display glucose intolerance and epigenetic abnormalities similar to those from the oocytes of HG mice. Moreover, the expression of exogenous Tet3 mRNA in oocytes from HG mice ameliorates the maternal effect in offspring. Thus, our observations suggest an environment-sensitive window in oocyte development that confers predisposition to glucose intolerance in the next generation through TET3 insufficiency rather than through a direct perturbation of the oocyte epigenome. This finding suggests a potential benefit of pre-conception interventions in mothers to protect the health of offspring.


Asunto(s)
Dioxigenasas , Intolerancia a la Glucosa , Hiperglucemia , Oocitos , Adulto , Animales , Dioxigenasas/metabolismo , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/genética , Hiperglucemia/metabolismo , Herencia Materna , Ratones , Oocitos/metabolismo
7.
Mol Cell ; 77(1): 138-149.e5, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31735643

RESUMEN

PGAM5 is a mitochondrial serine/threonine phosphatase that regulates multiple metabolic pathways and contributes to tumorigenesis in a poorly understood manner. We show here that PGAM5 inhibition attenuates lipid metabolism and colorectal tumorigenesis in mice. PGAM5-mediated dephosphorylation of malic enzyme 1 (ME1) at S336 allows increased ACAT1-mediated K337 acetylation, leading to ME1 dimerization and activation, both of which are reversed by NEK1 kinase-mediated S336 phosphorylation. SIRT6 deacetylase antagonizes ACAT1 function in a manner that involves mutually exclusive ME1 S336 phosphorylation and K337 acetylation. ME1 also promotes nicotinamide adenine dinucleotide phosphate (NADPH) production, lipogenesis, and colorectal cancers in which ME1 transcripts are upregulated and ME1 protein is hypophosphorylated at S336 and hyperacetylated at K337. PGAM5 and ME1 upregulation occur via direct transcriptional activation mediated by ß-catenin/TCF1. Thus, the balance between PGAM5-mediated dephosphorylation of ME1 S336 and ACAT1-mediated acetylation of K337 strongly influences NADPH generation, lipid metabolism, and the susceptibility to colorectal tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Metabolismo de los Lípidos/fisiología , Fosforilación/fisiología , Proteínas de Transporte Vesicular/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Acetilación , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , NADP/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Activación Transcripcional/fisiología , Regulación hacia Arriba/fisiología
8.
Nature ; 590(7847): 600-605, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408412

RESUMEN

The intensive application of inorganic nitrogen underlies marked increases in crop production, but imposes detrimental effects on ecosystems1,2: it is therefore crucial for future sustainable agriculture to improve the nitrogen-use efficiency of crop plants. Here we report the genetic basis of nitrogen-use efficiency associated with adaptation to local soils in rice (Oryza sativa L.). Using a panel of diverse rice germplasm collected from different ecogeographical regions, we performed a genome-wide association study on the tillering response to nitrogen-the trait that is most closely correlated with nitrogen-use efficiency in rice-and identified OsTCP19 as a modulator of this tillering response through its transcriptional response to nitrogen and its targeting to the tiller-promoting gene DWARF AND LOW-TILLERING (DLT)3,4. A 29-bp insertion and/or deletion in the OsTCP19 promoter confers a differential transcriptional response and variation in the tillering response to nitrogen among rice varieties. The allele of OsTCP19 associated with a high tillering response to nitrogen is prevalent in wild rice populations, but has largely been lost in modern cultivars: this loss correlates with increased local soil nitrogen content, which suggests that it might have contributed to geographical adaptation in rice. Introgression of the allele associated with a high tillering response into modern rice cultivars boosts grain yield and nitrogen-use efficiency under low or moderate levels of nitrogen, which demonstrates substantial potential for rice breeding and the amelioration of negative environment effects by reducing the application of nitrogen to crops.


Asunto(s)
Adaptación Fisiológica/genética , Productos Agrícolas/genética , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Suelo/química , Alelos , Productos Agrícolas/metabolismo , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Introgresión Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Mutación INDEL , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética
9.
Proc Natl Acad Sci U S A ; 121(8): e2306936121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349873

RESUMEN

Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/genética , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Transducción de Señal , Presión Sanguínea , Perfilación de la Expresión Génica , Receptor de Angiotensina Tipo 1/genética , Angiotensina II/metabolismo
10.
Nat Rev Neurosci ; 22(12): 758-776, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663954

RESUMEN

Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Prurito/metabolismo , Animales , Humanos , Neuronas/metabolismo , Neuropéptidos/metabolismo , Médula Espinal/metabolismo
11.
Cell ; 147(2): 447-58, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000021

RESUMEN

Spinal opioid-induced itch, a prevalent side effect of pain management, has been proposed to result from pain inhibition. We now report that the µ-opioid receptor (MOR) isoform MOR1D is essential for morphine-induced scratching (MIS), whereas the isoform MOR1 is required only for morphine-induced analgesia (MIA). MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, relaying itch information. We show that morphine triggers internalization of both GRPR and MOR1D, whereas GRP specifically triggers GRPR internalization and morphine-independent scratching. Providing potential insight into opioid-induced itch prevention, we demonstrate that molecular and pharmacologic inhibition of PLCß3 and IP3R3, downstream effectors of GRPR, specifically block MIS but not MIA. In addition, blocking MOR1D-GRPR association attenuates MIS but not MIA. Together, these data suggest that opioid-induced itch is an active process concomitant with but independent of opioid analgesia, occurring via the unidirectional cross-activation of GRPR signaling by MOR1D heterodimerization.


Asunto(s)
Analgesia , Analgésicos Opioides/administración & dosificación , Morfina/administración & dosificación , Dolor/tratamiento farmacológico , Prurito/inducido químicamente , Receptores de Bombesina/metabolismo , Receptores Opioides mu/metabolismo , Secuencia de Aminoácidos , Animales , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Receptores de Bombesina/genética , Receptores Opioides mu/genética , Transducción de Señal
12.
Nature ; 586(7828): 248-256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028999

RESUMEN

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Asunto(s)
Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Agricultura , Atmósfera/química , Productos Agrícolas/metabolismo , Actividades Humanas , Internacionalidad , Nitrógeno/análisis , Nitrógeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(31): e2301364120, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487078

RESUMEN

In nearly all cases of underwater adhesion, water molecules typically act as a destroyer. Thus, removing interfacial water from the substrate surfaces is essential for forming super-strong underwater adhesion. However, current methods mainly rely on physical means to dislodge interfacial water, such as absorption, hydrophobic repulsion, or extrusion, which are inefficient in removing obstinate hydrated water at contact interface, resulting in poor adhesion. Herein, we present a unique means of reversing the role of water to assist in realizing a self-strengthening liquid underwater adhesive (SLU-adhesive) that can effectively remove water at contact interface. This is achieved through multiscale physical-chemical coupling methods across millimeter to molecular levels and self-adaptive strengthening of the cohesion during underwater operations. As a result, strong adhesion over 1,600 kPa (compared to ~100 to 1,000 kPa in current state of the art) can be achieved on various materials, including inorganic metal and organic plastic materials, without preloading in different environments such as pure water, a wide range of pH solutions (pH = 3 to 11), and seawater. Intriguingly, SLU-adhesive/photothermal nanoparticles (carbon nanotubes) hybrid materials can significantly reduce the time required for complete curing from 24 h to 40 min using near-infrared laser radiation due to unique thermal-response of the chemical reaction rate. The excellent adhesion property and self-adaptive adhesion procedure allow SLU-adhesive materials to demonstrate great potential for broad applications in underwater sand stabilization, underwater repair, and even adhesion failure detection as a self-reporting adhesive. This concept of "water helper" has potential to advance underwater adhesion and manufacturing strategies.

14.
Proc Natl Acad Sci U S A ; 120(6): e2216230120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724251

RESUMEN

Gastrin releasing peptide receptor (GRPR), a member of the bombesin (BBN) G protein-coupled receptors, is aberrantly overexpressed in several malignant tumors, including those of the breast, prostate, pancreas, lung, and central nervous system. Additionally, it also mediates non-histaminergic itch and pathological itch conditions in mice. Thus, GRPR could be an attractive target for cancer and itch therapy. Here, we report the inactive state crystal structure of human GRPR in complex with the non-peptide antagonist PD176252, as well as two active state cryo-electron microscopy (cryo-EM) structures of GRPR bound to the endogenous peptide agonist gastrin-releasing peptide and the synthetic BBN analog [D-Phe6, ß-Ala11, Phe13, Nle14] Bn (6-14), in complex with Gq heterotrimers. These structures revealed the molecular mechanisms for the ligand binding, receptor activation, and Gq proteins signaling of GRPR, which are expected to accelerate the structure-based design of GRPR antagonists and agonists for the treatments of cancer and pruritus.


Asunto(s)
Neoplasias , Receptores de Bombesina , Masculino , Humanos , Ratones , Animales , Receptores de Bombesina/agonistas , Receptores de Bombesina/metabolismo , Microscopía por Crioelectrón , Bombesina/farmacología , Péptido Liberador de Gastrina/metabolismo , Prurito/metabolismo
15.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198215

RESUMEN

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Pyrus , Factores de Transcripción , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética
16.
Int Immunol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955508

RESUMEN

Regulatory T cells (Tregs) ameliorate inflammatory bowel diseases. However, their plasticity is not completely understood. In this study using a mouse colitis model, Tregs and T helper 17 (Th17)-like Tregs were detected and sorted using flow cytometry, followed by transcriptome sequencing, real-time RT-PCR, and flow cytometry to analyze the mRNA profiles of these cells. Treg plasticity was evaluated by in vitro differentiation assays. The immunosuppressive activities of Tregs and Th17-like Tregs were assessed in an adoptive transfer assay. We found Tregs-derived Th17-like Tregs in inflamed colonic lamina propria (LP). LP Th17-like Tregs expressed higher Th17-related cytokines and lower immunosuppressive cytokines compared with LP Tregs. Notably, Tregs expressed higher Yes-associated protein 1 (YAP1) but lower transcriptional coactivator with PDZ­binding motif (TAZ) than Th17-like Tregs. Verteporfin-mediated inhibition of YAP1 activity enhanced Th17-like Treg generation, whereas IBS008739-induced TAZ activation did not affect Th17-like Treg generation. Besides, verteporfin enhanced while IBS008739 suppressed the differentiation of Th17-like Tregs into Th17 cells. Furthermore, YAP1 activated STAT5 signaling in Tregs, whereas YAP1 and TAZ activated STAT3 and STAT5 signaling in Th17-like Tregs. Compared with Tregs, Th17-like Tregs were less efficacious in ameliorating colitis. Therefore, YAP1 suppressed Treg differentiation into Th17-like Tregs. Both YAP1 and TAZ inhibited the differentiation of Th17-like Tregs into Th17 cells. Therefore, YAP1 and TAZ probably maintain the immunosuppressive activities of Tregs and Th17-like Tregs in colitis.

18.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740166

RESUMEN

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Asunto(s)
Apoptosis , Inflamación , Degeneración del Disco Intervertebral , Factores Inhibidores de la Migración de Macrófagos , Núcleo Pulposo , Ratas Sprague-Dawley , Animales , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Apoptosis/efectos de los fármacos , Inflamación/metabolismo , Inflamación/patología , Ratas , Masculino , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Femenino , Isoxazoles/farmacología , Adulto , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasas/metabolismo
19.
Neuroimage ; 290: 120574, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467346

RESUMEN

Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.


Asunto(s)
Corteza Prefrontal , Recompensa , Humanos , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Encéfalo , Obesidad
20.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G317-G332, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954822

RESUMEN

Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.


Asunto(s)
Autofagia , Enteritis , Mucosa Intestinal , MicroARNs , Proteína Asociada al mTOR Insensible a la Rapamicina , MicroARNs/metabolismo , MicroARNs/genética , Animales , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Ratones , Mucosa Intestinal/metabolismo , Humanos , Enteritis/metabolismo , Enteritis/genética , Enteritis/patología , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colitis/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA