RESUMEN
BACKGROUND: Plants attenuate their responses to a variety of bacterial and fungal pathogens, leading to higher incidences of pathogen infection at night. However, little is known about the molecular mechanism responsible for the light-induced defence response; transcriptome data would likely facilitate the elucidation of this mechanism. RESULTS: In this study, we observed diurnal changes in tomato resistance to Pseudomonas syringae pv. tomato DC3000 (Pto DC3000), with the greatest susceptibility before midnight. Nightly light treatment, particularly red light treatment, significantly enhanced the resistance; this effect was correlated with increased salicylic acid (SA) accumulation and defence-related gene transcription. RNA-seq analysis revealed that red light induced a set of circadian rhythm-related genes involved in the phytochrome and SA-regulated resistance response. The biosynthesis and signalling pathways of multiple plant hormones (auxin, SA, jasmonate, and ethylene) were co-ordinately regulated following Pto DC3000 infection and red light, and the SA pathway was most significantly affected by red light and Pto DC3000 infection. This result indicates that SA-mediated signalling pathways are involved in red light-induced resistance to pathogens. Importantly, silencing of nonexpressor of pathogensis-related genes 1 (NPR1) partially compromised red light-induced resistance against Pto DC3000. Furthermore, sets of genes involved in redox homeostasis (respiratory burst oxidase homologue, RBOH; glutathione S-transferases, GSTs; glycosyltransferase, GTs), calcium (calmodulin, CAM; calmodulin-binding protein, CBP), and defence (polyphenol oxidase, PPO; nudix hydrolase1, NUDX1) as well as transcription factors (WRKY18, WRKY53, WRKY60, WRKY70) and cellulose synthase were differentially induced at the transcriptional level by red light in response to pathogen challenge. CONCLUSIONS: Taken together, our results suggest that there is a diurnal change in susceptibility to Pto DC3000 with greatest susceptibility in the evening. The red light induced-resistance to Pto DC3000 at night is associated with enhancement of the SA pathway, cellulose synthase, and reduced redox homeostasis.
Asunto(s)
Luz , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/genética , Ritmo Circadiano/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Glutatión/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de la radiación , Proteínas de Unión Periplasmáticas/antagonistas & inhibidores , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Fotosíntesis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Pseudomonas syringae/crecimiento & desarrollo , ARN/química , ARN/aislamiento & purificación , Ácido Salicílico/análisis , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transcripción Genética , TranscriptomaRESUMEN
In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell (<â¼10 µm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones. And their large containment and high ultrasound responsiveness also greatly facilitate to perform combined treatments, e.g., drug delivery and other imaging techniques. So multifunctionalized microscale UCAs appear on this scene and keep growing toward a promising direction for precise theranostics. In this review, we systematically summarize the new advances in the principles and preparations of multifunctionalized microscale UCAs and their medical applications for malignant tumors.