Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Cell ; 36(2): 367-382, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37930821

RESUMEN

The gaseous signaling molecule nitric oxide (NO) plays an important role in breaking seed dormancy. NO induces a decrease in abscisic acid (ABA) content by transcriptionally activating its catabolic enzyme, the ABA 8'-hydroxylase CYP707A2. However, the underlying mechanism of this process remains unclear. Here, we report that the transcription factor MYB30 plays a critical role in NO-induced seed germination in Arabidopsis (Arabidopsis thaliana). MYB30 loss-of-function attenuates NO-mediated seed dormancy breaking. MYB30 triggers a NO-induced decrease in ABA content during germination by directly promoting CYP707A2 expression. NO induces S-nitrosylation at Cys-49 of MYB30 and enhances its transcriptional activity. Conversely, the ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) interact with MYB30 and repress its transcriptional activity. ABA promotes the interaction between PYL4 and MYB30, whereas S-nitrosylation releases the PYL4-mediated inhibition of MYB30 by interfering with the PYL4-MYB30 interaction. Genetic analysis showed that MYB30 functions downstream of PYLs during seed dormancy and germination in response to NO. Furthermore, MYB30 mutation significantly represses the reduced dormancy phenotype and the enhanced CYP707A2 expression of the pyr1 pyl1 pyl2 pyl4 quadruple mutant. Our findings reveal that S-nitrosylation of MYB30 precisely regulates the balance of seed dormancy and germination, providing insights into the underlying mechanism of NO-promoted seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Óxido Nítrico/metabolismo , Semillas/genética , Semillas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell ; 34(2): 927-944, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865139

RESUMEN

High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tolerancia a la Sal , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología
3.
Plant Cell Physiol ; 64(7): 814-825, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37148388

RESUMEN

Floods impose detrimental effects on natural and agro-ecosystems, leading to a significant loss of worldwide crop production. Global climate change has even worsened this situation. Flooding is a continuous process including two stages of submergence and re-oxygenation, and both are harmful to plant growth and development, resulting in a serious decline in crop yield. Therefore, the understanding of plant flooding tolerance and developing flooding-resistant crops are of great significance. Here, we report that the Arabidopsis thaliana (Arabidopsis) R2R3-MYB transcription factor MYB30 participates in plant submergence response through 1-aminocyclopropane-1-carboxylic acid synthase 7 (ACS7) by repressing ethylene (ET) biosynthesis. The MYB30 loss-of-function mutant exhibits reduced submergence tolerance with a higher level of ET production, whereas the MYB30-overexpressing plant displays enhanced submergence tolerance and repressed ET production. The coding gene of ACS7 might be a direct target of MYB30 during the submergence response. MYB30 binds to the promoter of ACS7 and represses its transcription. The ACS7 loss-of-function mutant with defect in ET biosynthesis displays enhanced submergence tolerance, whereas plants overexpressing ACS7 exhibit a submergence-sensitive phenotype. Genetic analysis shows that ACS7 functions downstream of MYB30 in both ET biosynthesis and submergence response. Taken together, our work revealed a novel transcriptional regulation that modulates submergence response in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ecosistema , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiones Promotoras Genéticas/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Exp Bot ; 74(17): 5394-5404, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37326597

RESUMEN

Abscisic acid (ABA) is an essential phytohormone for plant responses to complex and variable environmental conditions. The molecular basis of the ABA signaling pathway has been well elucidated. SnRK2.2 and SnRK2.3 are key protein kinases participating in ABA responses, and the regulation of their activity plays an important role in signaling. Previous mass spectroscopy analysis of SnRK2.3 suggested that ubiquitin and homologous proteins may bind directly to the kinase. Ubiquitin typically recruits E3 ubiquitin ligase complexes to target proteins, marking them for degradation by the 26S proteasome. Here, we show that SnRK2.2 and SnRK2.3 interact with ubiquitin but are not covalently attached to the protein, resulting in the suppression of their kinase activity. The binding between SnRK2.2, SnRK2.3, and ubiquitin is weakened under prolonged ABA treatment. Overexpression of ubiquitin positively regulated the growth of seedlings exposed to ABA. Our results thus demonstrate a novel function for ubiquitin, which negatively regulates ABA responses by directly inhibiting SnRK2.2 and SnRK2.3 kinase activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina/metabolismo
5.
Plant J ; 106(2): 480-492, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33529413

RESUMEN

Root hair (RH) is essential for plant nutrient acquisition and the plant-environment communication. Here we report that transcription factors MYB30 and ETHYLENE INSENSITIVE3 (EIN3) modulate RH growth/elongation in Arabidopsis in an antagonistic way. The MYB30 loss-of-function mutant displays enhanced RH length, whereas the RH elongation in MYB30-overexpressing plants is highly repressed. MYB30 physically interacts with EIN3, a master transcription factor in ethylene signaling. MYB30 directly binds the promoter region of ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) and represses its transcription. RSL4 loss-of-function suppresses the enhanced RH growth in myb30 mutant plants. Ethylene enhances MYB30-EIN3 complex formation, and reduces the association between MYB30 and RSL4 promotor via the action of EIN3. MYB30 and EIN3 antagonistically regulate the expression of RSL4 and a subset of core RH genes in a genome-wide way. Taken together, our work revealed a novel transcriptional network that modulates RH growth in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
6.
J Integr Plant Biol ; 64(4): 930-941, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35167730

RESUMEN

The transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) plays a crucial role in abscisic acid (ABA) signaling during seed germination. However, how ABI5 is regulated during this process is poorly understood. Here, we report that the ubiquitin E3 ligase MIEL1 and its target transcription factor MYB30 modulate ABA responses in Arabidopsis thaliana during seed germination and seedling establishment via the precise regulation of ABI5. MIEL1 interacts with and ubiquitinates ABI5 to facilitate its degradation during germination. The transcription factor MYB30, whose turnover is mediated by MIEL1 during seed germination, also interacts with ABI5 to interfere with its transcriptional activity. MYB30 functions downstream of MIEL1 in the ABA response, and both are epistatic to ABI5 in ABA-mediated inhibition of seed germination and postgerminative growth. ABA treatment induces the degradation of MIEL1 and represses the interaction between MIEL1 and ABI5/MYB30, thus releasing both ABI5 and MYB30. Our results demonstrate that MIEL1 directly mediates the proteasomal degradation of ABI5 and inhibits its activity via the release of its target protein MYB30, thus ensuring precise ABA signaling during seed germination and seedling establishment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant J ; 102(6): 1157-1171, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31951058

RESUMEN

Salt stress reduces crop growth and productivity globally. Here we report that a R2R3-MYB transcription factor MYB30 participates in salt tolerance in Arabidopsis. MYB30 can be SUMOylated by SIZ1 in response to salt stress and the lysine (K)283 of MYB30 is essential for its SUMOylation. In contrast to wild-type MYB30, the MYB30K283R mutant failed to rescue the salt-sensitive phenotype of the myb30-2 mutant, indicating that SUMOylation of MYB30 is required for the salt-stress response. Through transcriptomic analysis, we identified a MYB30 target, alternative oxidase 1a (AOX1a). MYB30 binds the promoter of AOX1a and upregulates its expression in response to salt stress; however, MYB30K283R cannot bind the promoter of AOX1a. The cyanide (CN)-resistant alternative respiration (Alt) mediated by AOX is significantly reduced in the myb30-2 mutant through the loss of function of MYB30. As a result, the redox homeostasis is disrupted in the myb30-2 mutant compared with that in wild-type seedlings (WT) under salt conditions. The artificial elimination of excess reactive oxygen species partially rescues the salt-sensitive phenotype of the myb30-2 mutant, whereas after the exogenous application of SHAM, an inhibitor of AOXs and Alt respiration, the salt tolerance of Col-0 and the complemented plants decreased to a level similar to that observed in myb30-2. Finally, overexpression of AOX1a in myb30-2 confers WT-like salt tolerance compared with that of the myb30-2 mutant. Taken together, our results revealed a functional link between MYB30 and AOX1a, and indicated that SIZ1-mediated SUMOylation of MYB30 enhances salt tolerance by regulating Alt respiration and cellular redox homeostasis via AOX1a in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas Mitocondriales/fisiología , Oxidorreductasas/fisiología , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Respiración de la Célula , Regulación de la Expresión Génica de las Plantas , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal , Sumoilación , Factores de Transcripción/metabolismo , Regulación hacia Arriba
8.
Plant Mol Biol ; 105(6): 685-696, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33543389

RESUMEN

KEY MESSAGE: This work demonstrates that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens. Calcineurin B-Like protein (CBL)-interacting protein kinases (CIPKs) have been reported to be involved in multiple signaling networks and function in plant growth and stress responses, however, their biological functions in non-seed plants have not been well characterized. In this study, we report that PpCIPK1, a putative protein kinase, participates in regulating plant salt tolerance in moss Physcomitrella patens (P. patens). Phylogenetic analysis revealed that PpCIPK1 shared high similarity with its homologs in higher plants. PpCIPK1 transcription level was induced upon salt stress in P. patens. Using homologous recombination, we constructed PpCIPK1 knockout mutant lines (PpCIPK1 KO). Salt sensitivity analysis showed that independent PpCIPK1 KO plants exhibited severe growth inhibition and developmental deficiency of gametophytes under salt stress condition compared to that of wild-type P. patens (WT). Consistently, ionic homeostasis was disrupted in plants due to PpCIPK1 deletion, and high level of H2O2 was accumulated in PpCIPK1 KO than that in WT. Furthermore, PpCIPK1 functions in regulating photosynthetic activity in response to salt stress. Interestingly, we observed that PpCIPK1 could completely rescue the salt-sensitive phenotype of sos2-1 to WT level in Arabidopsis, indicating that AtSOS2 and PpCIPK1 are functionally conserved. In conclusion, our work provides evidence that PpCIPK1 participates in salt tolerance regulation in P. patens.


Asunto(s)
Bryopsida/fisiología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Plantas Tolerantes a la Sal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes de Plantas , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Plantas Tolerantes a la Sal/genética , Alineación de Secuencia , Estrés Fisiológico , Transcriptoma
9.
New Phytol ; 232(2): 625-641, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273177

RESUMEN

Salt stress significantly induces accumulation of misfolded or unfolded proteins in plants. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) and other degradative machineries function in the degradation of these abnormal proteins, leading to enhanced salt tolerance in plants. Here we characterise that a novel receptor-like kinase, Salt-Induced Malectin-like domain-containing Protein1 (SIMP1), elevates ERAD efficiency during salt stress through UMP1A, a putative proteasome maturation factor in Arabidopsis. SIMP1 loss-of-function caused a salt-hypersensitive phenotype. SIMP1 interacts and phosphorylates UMP1A, and the protein stability of UMP1A is positively regulated by SIMP1. SIMP1 modulates the 26S proteasome maturation possibly through enhancing the recruitment of specific ß subunits of the core catalytic particle to UMP1A. Functionally, the SIMP1-UMP1A module plays a positive role in ERAD efficiency in Arabidopsis. The degradation of misfolded/unfolded proteins was impaired in both simp1 and ump1a mutants during salt stress. Consistently, both simp1 and ump1a plants exhibited reduced ER stress tolerance. Phenotypic analysis revealed that SIMP1 regulates salt tolerance through UMP1A at least in part. Taken together, our work demonstrated that SIMP1 modulates plant salt tolerance by promoting proteasome maturation via UMP1A, therefore mitigating ER stress through enhanced ERAD efficiency under saline conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Tolerancia a la Sal
10.
PLoS Genet ; 14(4): e1007336, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29659577

RESUMEN

Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feedback mechanism and components negatively regulating this pathway are less well understood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1 which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition, ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress, suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3 were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation. Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their drought responses.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequías , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas , Mutación , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Factores de Transcripción/metabolismo
11.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924753

RESUMEN

Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.


Asunto(s)
Presión Osmótica , Plantas/metabolismo , Tolerancia a la Sal , Transducción de Señal
12.
New Phytol ; 228(2): 596-608, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32473058

RESUMEN

As abscisic acid (ABA) receptors, PYR1/PYL/RCAR (PYLs) play important roles in ABA-mediated seed germination, but the regulation of PYLs in this process, especially at the transcriptional level, remains unclear. In this study, we found that expression of 11 of 14 PYLs changes significantly during seed germination and is affected by exogenous ABA. Two PYLs, PYL11 and PYL12, both of which are expressed specifically in mature seeds, positively modulate ABA-mediated seed germination. However, ABI5 was found to modulate the PYL11- and PYL12-mediated ABA response. In the abi5-7 mutant, ABA hypersensitivity caused by PYL11 and PYL12 overexpression was totally or partially blocked. By contrast, ABI5 regulates the expression of PYL11 and PYL12 by directly binding to their promoters. Moreover, the expression of eight other PYLs is also affected during the germination of abi5 mutants. Promoter analysis revealed that an ABI5-binding region is present next to the TATA box or initiator box. Together, our data demonstrate the role of PYL11 and PYL12 in seed germination. In addition, the identification of PYLs as targets of ABI5 reveals a role of ABI5 in the feedback regulation of ABA-mediated seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retroalimentación , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas/genética , Semillas/metabolismo , Transducción de Señal
13.
Plant Cell Physiol ; 60(8): 1829-1841, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31119292

RESUMEN

Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


Asunto(s)
Bryopsida/metabolismo , Cloroplastos/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tolerantes a la Sal/metabolismo , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Mitocondriales/genética , Oxidación-Reducción , Oxidorreductasas/genética , Proteínas de Plantas/genética , Plantas Tolerantes a la Sal/genética
14.
Plant Cell Physiol ; 59(8): 1630-1642, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29684208

RESUMEN

Soil salinity significantly represses plant development and growth. Mechanisms involved sodium (Na+) extrusion and compartmentation, intracellular membrane trafficking as well as redox homeostasis regulation play important roles in plant salt tolerance. In this study, we report that Patellin1 (PATL1), a membrane trafficking-related protein, modulates salt tolerance in Arabidopsis. The T-DNA insertion mutant of PATL1 (patl1) with an elevated PATL1 transcription level displays a salt-sensitive phenotype. PATL1 partially associates with the plasma membrane (PM) and endosomal system, and might participate in regulating membrane trafficking. Interestingly, PATL1 interacts with SOS1, a PM Na+/H+ antiporter in the Salt-Overly-Sensitive (SOS) pathway, and the PM Na+/H+ antiport activity is lower in patl1 than in Col-0. Furthermore, the reactive oxygen species (ROS) content is higher in patl1 and the redox signaling of antioxidants is partially disrupted in patl1 under salt stress conditions. Artificial elimination of ROS could partially rescue the salt-sensitive phenotype of patl1. Taken together, our results indicate that PATL1 participates in plant salt tolerance by regulating Na+ transport at least in part via SOS1, and by modulating cellular redox homeostasis during salt stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Proteínas de Transferencia de Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal , Cloruro de Sodio/farmacología
15.
J Integr Plant Biol ; 60(4): 310-322, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29205850

RESUMEN

The conjugation of SUMO (small ubiquitin-like modifier) to protein substrates is a reversible process (SUMOylation/deSUMOylation) that regulates plant development and stress responses. The essential metal copper (Cu) is required for normal plant growth, but excess amounts are toxic. The SUMO E3 ligase, SIZ1, and SIZ1-mediated SUMOylation function in plant tolerance to excess Cu. It is unknown whether deSUMOylation also contributes to Cu tolerance in plants. Here, we report that OTS1, a protease that cleaves SUMO from its substrate proteins, participates in Cu tolerance in Arabidopsis thaliana (Arabidopsis). OTS1 loss-of-function mutants (ots1-2 and ots1-3) displayed increased sensitivity to excess Cu. Redox homeostasis and the balance between SUMOylation and deSUMOylation were disrupted in the ots1-3 mutant under excess Cu conditions. The ots1-3 mutant accumulated higher levels of Cu in both shoots and roots compared to wild type. Specific Cu-related metal transporter genes were upregulated due to the loss-of-function of OTS1, which might explain the high Cu levels in ots1-3. These results suggest that the SUMOylation/deSUMOylation machinery is activated in response to excess Cu, and modulates Cu homeostasis and tolerance by regulating both Cu uptake and detoxification. Together, our findings provide insight into the biological function and regulatory role of SUMOylation/deSUMOylation in plant tolerance to Cu.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Cobre/toxicidad , Cisteína Endopeptidasas/metabolismo , Sumoilación , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis/efectos de los fármacos , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sumoilación/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
16.
Plant Mol Biol ; 94(6): 565-576, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28695315

RESUMEN

KEY MESSAGE: UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses. Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Desarrollo de la Planta/fisiología , Estrés Fisiológico/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ubiquitinación
17.
Plant Cell Physiol ; 58(11): 1976-1990, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036694

RESUMEN

Boea hygrometrica (B. hygrometrica) can tolerate severe desiccation and resume photosynthetic activity rapidly upon water availability. However, little is known about the mechanisms by which B. hygrometrica adapts to dehydration and resumes competence upon rehydration. Here we determine how B. hygrometrica deals with oxidative stress, excessive excitation/electron pressures as well as photosynthetic apparatus modulation during dehydration/rehydration. By measuring ROS generation and scavenging efficiency, we found that B. hygrometrica possesses efficient strategies to maintain cellular redox homeostasis. Transmission electron microscopy (TEM) analysis revealed a remarkable alteration of chloroplast architecture and plastoglobules (PGs) accumulation during dehydration/rehydration. Pulse-amplitude modulated (PAM) chlorophyll fluorescence measurements, P700 redox assay as well as chlorophyll fluorescence emission spectra analysis on leaves of B. hygrometrica during dehydration/rehydration were also performed. Results showed that the photochemical activity of PSII as well as photoprotective energy dissipation in PSII undergo gradual inactivation/activation during dehydration/rehydration in B. hygrometrica; PSI activity is relatively induced upon water deficit, and dehydration leads to physical interaction between PSI and LHCII. Furthermore, blue-native polyacrylamide gel electrophoresis (BN-PAGE) and immunoblot analysis revealed that the protein abundance of light harvesting complexes decrease markedly along with internal water deficit to restrict light absorption and attenuate electron transfer, resulting in limited light excitation and repressed photosynthesis. In contrast, many thylakoid proteins remain at a basal level even after full dehydration. Taken together, our study demonstrated that efficient modulation of cellular redox homeostasis and photosynthetic activity confers desiccation tolerance in B. hygrometrica.


Asunto(s)
Magnoliopsida/fisiología , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Clorofila/metabolismo , Cloroplastos/fisiología , Deshidratación , Metabolismo Energético , Homeostasis , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Células Vegetales/metabolismo , Células Vegetales/fisiología , Tilacoides/metabolismo , Agua/metabolismo
18.
Plant Cell ; 26(3): 1166-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24659330

RESUMEN

The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion (Na(+)) homeostasis and salt tolerance in plants. Until recently, little was known about the mechanisms that inhibit the SOS pathway when plants are grown in the absence of salt stress. In this study, we report that the Arabidopsis thaliana 14-3-3 proteins λ and κ interact with SOS2 and repress its kinase activity. Growth in the presence of salt decreases the interaction between SOS2 and the 14-3-3 proteins, leading to kinase activation in planta. 14-3-3 λ interacts with the SOS2 junction domain, which is important for its kinase activity. A phosphorylation site (Ser-294) is identified within this domain by mass spectrometry. Mutation of Ser-294 to Ala or Asp does not affect SOS2 kinase activity in the absence of the 14-3-3 proteins. However, in the presence of 14-3-3 proteins, the inhibition of SOS2 activity is decreased by the Ser-to-Ala mutation and enhanced by the Ser-to-Asp exchange. These results identify 14-3-3 λ and κ as important regulators of salt tolerance. The inhibition of SOS2 mediated by the binding of 14-3-3 proteins represents a novel mechanism that confers basal repression of the SOS pathway in the absence of salt stress.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/metabolismo , Sodio/metabolismo , Proteínas 14-3-3/genética , Adaptación Fisiológica , Arabidopsis/fisiología , Mutación , Fosforilación , Sales (Química)
19.
Plant Mol Biol ; 92(3): 391-400, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27503471

RESUMEN

KEY MESSAGE: Salt stress induces the degradation of 14-3-3 proteins, and affects the localization of 14-3-3 λ. Both the modulation of 14-3-3 protein stability and the subcellular localization of these proteins are involved in salt tolerance in plants. Salt tolerance in plants is regulated by multiple signaling pathways, including the salt overly sensitive (SOS) pathway, of which the SOS2 protein is a key component. SOS2 is activated under salt stress to enhance salt tolerance in plants. We previously identified 14-3-3 λ and κ as important regulators of salt tolerance. Both proteins interact with SOS2 to inhibit its kinase activity under normal growth conditions. In response to salt stress, 14-3-3 proteins dissociate from SOS2, releasing its activity and activating the SOS pathway to confer salt tolerance (Zhou et al. Plant Cell 26:1166-1182, 2014). Here we report that salt stress promotes the degradation of 14-3-3 λ and κ, at least in part via the actions of SOS3-like calcium binding protein 8/calcineurin-B-like10, and also decreases the plasma membrane (PM) localization of 14-3-3 λ. Salt stress also partially represses the interaction of SOS2 and 14-3-3 λ at the PM, but activates PM-localized SOS2. Together, these results suggest that, in plants, both the modulation of 14-3-3 stability and the subcellular localization of these proteins in response to salt stress are important for SOS2 activation and salt tolerance. These data provide new insights into the biological roles of 14-3-3 proteins in modulating salt tolerance.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/metabolismo , Proteínas 14-3-3/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Cloruro de Sodio/farmacología , Ubiquitinación
20.
Plant Cell Environ ; 39(2): 427-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26290265

RESUMEN

Abscisic acid (ABA) is an important plant hormone integrating environmental stress and plant growth. Protein ubiquitination and deubiquitination are reversible processes catalysed by E3 ubiquitin ligase and deubiquitinating enzyme, respectively. Lots of E3 ubiquitin ligase and transcriptional factors modified by ubiquitination were reported to modulate ABA signalling. However, no deubiquitinating enzyme has been identified that functions in ABA signalling until now. Here, we isolated an ABA overly sensitive mutant, ubp24, in which the gene encoding ubiquitin-specific protease 24 (UBP24, At4g30890) was disrupted by a T-DNA insertion. The ubp24 mutant was hypersensitive to ABA and salt stress in both post-germinative growth and seedling growth. However, stomata closure in the ubp24 mutant was less sensitive to ABA, and the ubp24 mutant showed drought sensitivity. UBP24 possessed deubiquitinating enzyme activity, and the activity was essential for UBP24 function. Additionally, UBP24 formed homodimer in vivo. UBP24 was genetically upstream of ABI2, and the phosphatase activity of protein phosphatase 2C was decreased in the ubp24 mutant compared with the wild type in the presence of ABA. These results uncover an important regulatory role for the ubiquitin-specific protease in response to ABA and salt stress in plant.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Transducción de Señal , Ubiquitina Tiolesterasa/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Genoma de Planta , Germinación/efectos de los fármacos , Mutación/genética , Fenotipo , Fosfoproteínas Fosfatasas/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Multimerización de Proteína/efectos de los fármacos , Proteína Fosfatasa 2C , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA