Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(3): 1002-1015, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009996

RESUMEN

PURPOSE: To develop a novel MR physics-driven, deep-learning, extrapolated semisolid magnetization transfer reference (DeepEMR) framework to provide fast, reliable magnetization transfer contrast (MTC) and CEST signal estimations, and to determine the reproducibility and reliability of the estimates from the DeepEMR. METHODS: A neural network was designed to predict a direct water saturation and MTC-dominated signal at a certain CEST frequency offset using a few high-frequency offset features in the Z-spectrum. The accuracy, scan-rescan reproducibility, and reliability of MTC, CEST, and relayed nuclear Overhauser enhancement (rNOE) signals estimated from the DeepEMR were evaluated on numerical phantoms and in heathy volunteers at 3 T. In addition, we applied the DeepEMR method to brain tumor patients and compared tissue contrast with other CEST calculation metrics. RESULTS: The DeepEMR method demonstrated a high degree of accuracy in the estimation of reference MTC signals at ±3.5 ppm for APT and rNOE imaging, and computational efficiency (˜190-fold) compared with a conventional fitting approach. In addition, the DeepEMR method achieved high reproducibility and reliability (intraclass correlation coefficient = 0.97, intersubject coefficient of variation = 3.5%, and intrasubject coefficient of variation = 1.3%) of the estimation of MTC signals at ±3.5 ppm. In tumor patients, DeepEMR-based amide proton transfer images provided higher tumor contrast than a conventional MT ratio asymmetry image, particularly at higher B1 strengths (>1.5 µT), with a distinct delineation of the tumor core from normal tissue or peritumoral edema. CONCLUSION: The DeepEMR approach is feasible for measuring clean APT and rNOE effects in longitudinal and cross-sectional studies with low scan-rescan variability.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Estudios Transversales , Algoritmos , Neoplasias Encefálicas/patología , Amidas , Encéfalo/diagnóstico por imagen , Encéfalo/patología
2.
Nanotechnology ; 35(32)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38701762

RESUMEN

There are several prospective applications for omnidirectional ultraviolet (UV) detectors and underwater detection detectors in optical systems and optical fields. In this work, ZnO nanorods arrays were grown on carbon fibers (CFs). An appropriate amount of Ag nanoparticles (NPs) was deposited on the surface of ZnO nanorods by photochemical deposition. This improved the performance of photoelectrochemical (PEC) based UV detectors. Under 365 nm and 10 mW cm-2UV irradiation, the photocurrent density of the 30s-Ag/ZnO@CFs based PEC UV detector can reach 1.28 mA cm-2, which is about 7 times that of the ZnO@CFs based PEC UV detector, and the rising time is shortened from 0.17 to 0.10 s. The reason is that increased absorption of ultraviolet light induced by the localized surface plasmon resonance. In addition, the detector exhibits a good flexibility and remains flexible after hundreds of bends and twists. Moreover, the detector is responsive in the range of rotation angle from 0° to 360°. It provides an insight to improve the photoelectric performance and underwater omnidirectional detection ability of the PEC UV detector.

3.
Small ; 19(34): e2301884, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37162447

RESUMEN

Flexible electronics have gained great attention in recent years owing to their promising applications in biomedicine, sustainable energy, human-machine interaction, and toys for children. Paper mainly produced from cellulose fibers is attractive substrate for flexible electronics because it is biodegradable, foldable, tailorable, and light-weight. Inspired by daily handwriting, the rapid prototyping of sensing devices with arbitrary patterns can be achieved by directly drawing conductive inks on flat or curved paper surfaces; this provides huge freedom for children to design and integrate "do-it-yourself (DIY)" electronic toys. Herein, viscous and additive-free ink made from Ti3 C2 TX MXene sediment is employed to prepare disposable paper electronics through a simple ball pen drawing. The as-drawn paper sensors possess hierarchical microstructures with interweaving nanosheets, nanoflakes, and nanoparticles, therefore exhibiting superior mechanosensing performances to those based on single/fewer-layer MXene nanosheets. As proof-of-concept applications, several popular children's games are implemented by the MXene-based paper sensors, including "You say, I guess," "Emotional expression," "Rock-Paper-Scissors," "Arm wrestling," "Throwing game," "Carrot squat," and "Grab the cup," as well as a DIY smart whisker for a cartoon mouse. Moreover, MXene-based paper sensors are safe and disposable, free from producing any e-waste and hazard to the environment.

4.
Magn Reson Med ; 90(4): 1518-1536, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317675

RESUMEN

PURPOSE: To develop a unified deep-learning framework by combining an ultrafast Bloch simulator and a semisolid macromolecular magnetization transfer contrast (MTC) MR fingerprinting (MRF) reconstruction for estimation of MTC effects. METHODS: The Bloch simulator and MRF reconstruction architectures were designed with recurrent neural networks and convolutional neural networks, evaluated with numerical phantoms with known ground truths and cross-linked bovine serum albumin phantoms, and demonstrated in the brain of healthy volunteers at 3 T. In addition, the inherent magnetization-transfer ratio asymmetry effect was evaluated in MTC-MRF, CEST, and relayed nuclear Overhauser enhancement imaging. A test-retest study was performed to evaluate the repeatability of MTC parameters, CEST, and relayed nuclear Overhauser enhancement signals estimated by the unified deep-learning framework. RESULTS: Compared with a conventional Bloch simulation, the deep Bloch simulator for generation of the MTC-MRF dictionary or a training data set reduced the computation time by 181-fold, without compromising MRF profile accuracy. The recurrent neural network-based MRF reconstruction outperformed existing methods in terms of reconstruction accuracy and noise robustness. Using the proposed MTC-MRF framework for tissue-parameter quantification, the test-retest study showed a high degree of repeatability in which the coefficients of variance were less than 7% for all tissue parameters. CONCLUSION: Bloch simulator-driven, deep-learning MTC-MRF can provide robust and repeatable multiple-tissue parameter quantification in a clinically feasible scan time on a 3T scanner.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos
5.
NMR Biomed ; 36(6): e4699, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35067987

RESUMEN

Chemical exchange saturation transfer (CEST) imaging is an emerging molecular magnetic resonance imaging (MRI) technique that has been developed and employed in numerous diseases. Based on the unique saturation transfer principle, a family of CEST-detectable biomolecules in vivo have been found capable of providing valuable diagnostic information. However, CEST MRI needs a relatively long scan time due to the common long saturation labeling module and typical acquisition of multiple frequency offsets and signal averages, limiting its widespread clinical applications. So far, a plethora of imaging schemes and techniques has been developed to accelerate CEST MRI. In this review, the key acquisition and reconstruction methods for fast CEST imaging are summarized from a practical and systematic point of view. The first acquisition sequence section describes the major development of saturation schemes, readout patterns, ultrafast z-spectroscopy, and saturation-editing techniques for rapid CEST imaging. The second reconstruction method section lists the important advances of parallel imaging, compressed sensing, sparsity in the z-spectrum, and algorithms beyond the Fourier transform for speeding up CEST MRI.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Análisis de Fourier , Fantasmas de Imagen
6.
NMR Biomed ; 36(6): e4731, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35297117

RESUMEN

Chemical exchange saturation transfer (CEST) imaging is an important molecular magnetic resonance imaging technique that can image numerous low-concentration biomolecules with water-exchangeable protons (such as cellular proteins) and tissue pH. CEST, or more specially amide proton transfer-weighted imaging, has been widely used for the detection, diagnosis, and response assessment of brain tumors, and its feasibility in identifying molecular markers in gliomas has also been explored in recent years. In this paper, after briefing on the basic principles and quantification methods of CEST imaging, we review its early applications in identifying isocitrate dehydrogenase mutation status, MGMT methylation status, 1p/19q deletion status, and H3K27M mutation status in gliomas. Finally, we discuss the limitations or weaknesses in these studies.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Marcadores Genéticos , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/química , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/química , Protones , Isocitrato Deshidrogenasa/genética
7.
NMR Biomed ; 36(10): e4983, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37259224

RESUMEN

Stroke is a highly heterogeneous disorder with distinct subtypes, and the stroke subtype influences the outcome. Amide proton transfer-weighted (APTW) MRI has been demonstrated to be promising in stroke patients, but the image characteristics of stroke subtypes have not been sufficiently investigated. The purpose of this study was to investigate the APTW MRI features of different subtypes of acute ischemic stroke (AIS). Ninety-two AIS patients presenting within 96 h of symptom onset were enrolled and examined with a 3.0-T MRI system. Patients were grouped into four subtypes: lacunar circulation infarcts (LACI, n = 33); total anterior circulation infarcts (TACI, n = 9); partial anterior circulation infarcts (PACI, n = 28); and posterior circulation infarcts (POCI, n = 22). APTW values in the lesion (APTWlesion ) and the contralateral normal-appearing region (APTWcontral ) were measured. The change in APTW values between the acute ischemic lesion and the contralateral normal-appearing region (APTWles-con ) was calculated. A two-sample t-test, one-way ANOVA, and the Chi-square method were used. There were significant differences between APTWlesion and APTWcontral in the three categories of nonlacunar strokes (TACI, PACI, and POCI, all p < 0.01), but not for lacunar strokes (LACI, p = 0.080). TACI patients had the lowest APTWlesion and APTWles-con in all groups (p < 0.05). In the POCI group, patients with supratentorial infarcts showed significant differences between APTWlesion and APTWcontral (p = 0.001), while the differences were not significant for infratentorial infarcts (p = 0.135). Our results suggest that the APT effect was heterogeneous in different stroke subtypes, and that APTW MRI gave an excellent performence in depicting nonlacunar AIS in supratentorial locations.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Protones , Amidas , Accidente Cerebrovascular/diagnóstico por imagen , Imagen por Resonancia Magnética , Infarto
8.
Magn Reson Med ; 88(2): 546-574, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452155

RESUMEN

Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.


Asunto(s)
Neoplasias Encefálicas , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Consenso , Dimaprit/análogos & derivados , Humanos , Imagen por Resonancia Magnética/métodos , Protones
9.
Anal Bioanal Chem ; 414(9): 2971-2989, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35234980

RESUMEN

The boom in nanotechnology brings new insights into the development of artificial enzymes (nanozymes) with ease of modification, lower manufacturing cost, and higher catalytic stability than natural enzymes. Among various nanomaterials, two-dimensional (2D) nanomaterials exhibit promising enzyme-like properties for a plethora of bioapplications owing to their unique physicochemical characteristics of tuneable composition, ultrathin thickness, and huge specific surface area. Herein, we review the recent advances in several 2D material-based nanozymes, such as carbonaceous nanosheets, metal-organic frameworks (MOFs), transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and transition metal oxides (TMOs), clarify the mechanisms of peroxidase (POD)-mimicking catalytic behaviors, and overview the potential bioapplications of 2D nanozymes.


Asunto(s)
Estructuras Metalorgánicas , Nanoestructuras , Catálisis , Estructuras Metalorgánicas/química , Nanoestructuras/química , Peroxidasa , Peroxidasas
10.
Magn Reson Med ; 86(4): 1845-1858, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33961312

RESUMEN

PURPOSE: As the field of CEST grows, various novel preparation periods using different parameters are being introduced. At the same time, large, multisite clinical studies require clearly defined protocols, especially across different vendors. Here, we propose a CEST definition standard using the open Pulseq format for a shareable, simple, and exact definition of CEST protocols. METHODS: We present the benefits of such a standard in three ways: (1) an open database on GitHub, where fully defined, human-readable CEST protocols can be shared; (2) an open-source Bloch-McConnell simulation to test and optimize CEST preparation periods in silico; and (3) a hybrid MR sequence that plays out the CEST preparation period and can be combined with any existing readout module. RESULTS: The exact definition of the CEST preparation period, in combination with the flexible simulation, leads to a good match between simulations and measurements. The standard allowed finding consensus on three amide proton transfer-weighted protocols that could be compared in healthy subjects and a tumor patient. In addition, we could show coherent multisite results for a sophisticated CEST method, highlighting the benefits regarding protocol sharing and reproducibility. CONCLUSION: With Pulseq-CEST, we provide a straightforward approach to standardize, share, simulate, and measure different CEST preparation schemes, which are inherently completely defined.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Amidas , Simulación por Computador , Humanos , Reproducibilidad de los Resultados
11.
Nanotechnology ; 32(47)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34359054

RESUMEN

In order to solve the 'ultraviolet (UV) filtering problem' caused by traditional sandwich-type structure in photoelectrochemical (PEC) UV detector, we design a special electrode based on stainless steel mesh, which integrates the light absorption layer and the electron collection electrode in a simple way. In combination with an UV-transparent quartz substrate, UV light can directly reach the active material. The improved detector shows good visible-blind, self-powered, and linear response characteristics. The serious recombination caused by metal electrode is suppressed by depositing a barrier layer. The optimized device exhibits a high photoresponse of 0.103 A W-1at 296 nm, a short recovery time of 250 ms, and very sensitive switching ability. Furthermore, the response range of the detector is expanded from 300 to 400 nm to the full near-UV region. Our work provides an efficient strategy to solve the key problem of the PEC UV detector.

12.
Nanotechnology ; 32(27)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784657

RESUMEN

Metal sulfides are often used as cathode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity; however, excessively fast capacity decay during charging/discharging and rapid shedding during cycling limits their practical application in batteries. In this study, we proposed a strategy using plasma treatment combined with the solvothermal method to prepare cobalt sulfide (Co1-xS)-carbon nanofibers (CNFs) composite. The plasma treatment could introduce oxygen-containing polar groups and defects, which could improve the hydrophilicity of the CNFs for the growth of the Co1-xS, thereby increasing the specific capacity of the composite electrode. The results show that the composite electrode present a high discharge specific capacity (839 mAh g-1at a current density of 100 mA g-1) and good cycle stability (the capacity retention rate almost 100% at 2000 mA g-1after 500 cycles), attributing to the high conductivity of the CNFs. This study proves the application of plasma treatment and simple vulcanization method in high-performance LIBs.

13.
Neuroradiology ; 63(3): 363-372, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32879995

RESUMEN

PURPOSE: To evaluate the incremental value of amide proton transfer (APT) imaging to diffusion tensor imaging (DTI), dynamic susceptibility contrast (DSC) imaging, and dynamic contrast-enhanced (DCE) imaging in differentiating recurrent diffuse gliomas (World Health Organization grade II-IV) from treatment-induced change after concurrent chemoradiotherapy or radiotherapy. METHODS: This study included 36 patients (25 patients with recurrent gliomas and 11 with treatment-induced changes) with post-treatment gliomas. The mean values of apparent diffusion coefficient (ADC), fractional anisotropy (FA), normalized cerebral blood volume (nCBV), normalized cerebral blood flow, volume transfer constant, rate transfer coefficient, extravascular extracellular volume fraction, plasma volume fraction, and APT asymmetry index were assessed. Independent quantitative parameters were investigated to predict recurrent glioma using multivariable logistic regression. The incremental value of APT signal to other parameters was assessed by the increase of the area under the curve, net reclassification index, and integrated discrimination improvement. RESULTS: Univariable analysis showed that lower ADC (p = 0.018), higher FA (p = 0.031), higher nCBV (p = 0.021), and higher APT signal (p = 0.009) were associated with recurrent gliomas. In multivariable logistic regression, the diagnostic performance of the model with ADC, FA, and nCBV significantly increased when APT signal was added, with areas under the curve of 0.87 and 0.92, respectively (net reclassification index of 0.77 and integrated discrimination improvement of 0.13). CONCLUSION: APT imaging may be a useful imaging biomarker that adds value to DTI, DCE, and DSC parameters for distinguishing between recurrent gliomas and treatment-induced changes.


Asunto(s)
Neoplasias Encefálicas , Glioma , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Imagen de Difusión Tensora , Glioma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Clasificación del Tumor , Recurrencia Local de Neoplasia/diagnóstico por imagen , Perfusión , Protones
14.
Small ; 16(25): e2000653, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32432831

RESUMEN

Fiber-based supercapacitors (FSCs) possess great potential as an ideal type of power source for future weaveable/wearable electronics and electronic-textiles. The performance of FSCs is, without doubt, primarily determined by the properties of fibrous electrodes. Carbonaceous fibers, e.g., commercial carbon fibers, newly developed graphene fibers, and carbon nanotube fibers, are deemed as promising materials for weaveable/wearable supercapacitors owing to their exotic properties including high tensile strength and robustness, excellent electrical conductivity, good flexibility, and environmental stability. Nevertheless, bare carbonaceous fiber normally exhibits low capacitance originating from electric double-layer capacitance, which remains unsatisfactory for efficiently powering wearable and portable devices. Numerous efforts have been devoted to tailoring fiber properties by hybridizing pseudocapacitive materials, and impressive progress has been achieved thus far. Herein, the microstructures of pristine carbonaceous fibers are introduced in detail, and the recent advances in rational nano/microstructure design of their hybrids, which provides the feasibility to achieve the synergistic interaction between conductive agents and pseudocapacitive nanomaterials but are normally overlooked, are comprehensively reviewed. Besides, the challenges in developing high-performance fibrous electrodes are also elaborately discussed.

15.
Neuroimage ; 189: 202-213, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30654175

RESUMEN

Current chemical exchange saturation transfer (CEST) neuroimaging protocols typically acquire CEST-weighted images, and, as such, do not essentially provide quantitative proton-specific exchange rates (or brain pH) and concentrations. We developed a dictionary-free MR fingerprinting (MRF) technique to allow CEST parameter quantification with a reduced data set. This was accomplished by subgrouping proton exchange models (SPEM), taking amide proton transfer (APT) as an example, into two-pool (water and semisolid macromolecules) and three-pool (water, semisolid macromolecules, and amide protons) models. A variable radiofrequency saturation scheme was used to generate unique signal evolutions for different tissues, reflecting their CEST parameters. The proposed MRF-SPEM method was validated using Bloch-McConnell equation-based digital phantoms with known ground-truth, which showed that MRF-SPEM can achieve a high degree of accuracy and precision for absolute CEST parameter quantification and CEST phantoms. For in-vivo studies at 3 T, using the same model as in the simulations, synthetic Z-spectra were generated using rates and concentrations estimated from the MRF-SPEM reconstruction and compared with experimentally measured Z-spectra as the standard for optimization. The MRF-SPEM technique can provide rapid and quantitative human brain CEST mapping.


Asunto(s)
Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Neuroimagen/métodos , Adulto , Amidas , Humanos , Interpretación de Imagen Asistida por Computador/normas , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Imagen Molecular/normas , Neuroimagen/normas , Protones , Reproducibilidad de los Resultados
16.
Small ; 15(47): e1904255, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31588685

RESUMEN

As an essential member of 2D materials, MXene (e.g., Ti3 C2 Tx ) is highly preferred for energy storage owing to a high surface-to-volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium-ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF-67 polyhedrons into 3D hollow frameworks via electrostatic self-assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2 Mo3 O8 @MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2 Mo3 O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2 Mo3 O8 . Such hollow frameworks present a high reversible capacity of 947.4 mAh g-1 at 0.1 A g-1 , an impressive rate behavior with 435.8 mAh g-1 retained at 5 A g-1 , and good stability over 1200 cycles (545 mAh g-1 at 2 A g-1 ).

17.
Magn Reson Med ; 81(1): 316-330, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30125383

RESUMEN

PURPOSE: To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym (3.5 ppm)), quantitative amide proton transfer (APT# ), and nuclear Overhauser enhancement (NOE# ) signals or contrasts on experimental imaging parameters. METHODS: Modified Bloch equation-based simulations using 2-pool and 5-pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym (3.5 ppm), APT# , and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters. RESULTS: The MTRasym (3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6-2 s under relatively high RF saturation powers (>2.1 µT) and at a longer saturation length under relatively low RF saturation powers (<1.3 µT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym (3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied. CONCLUSION: Tumor MTRasym (3.5 ppm), APT# , and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym (3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Glioma/diagnóstico por imagen , Algoritmos , Animales , Simulación por Computador , Medios de Contraste , Modelos Animales de Enfermedad , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Método de Montecarlo , Trasplante de Neoplasias , Protones , Ratas , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Agua
18.
Magn Reson Med ; 82(6): 2046-2061, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31264278

RESUMEN

PURPOSE: To extend the variably-accelerated sensitivity encoding (vSENSE) method from 2D to 3D for fast chemical exchange saturation transfer (CEST) imaging, and prospectively implement it for clinical MRI. METHODS: The CEST scans were acquired from 7 normal volunteers and 15 brain tumor patients using a 3T clinical scanner. The 2D and 3D "artifact suppression" (AS) vSENSE algorithms were applied to generate sensitivity maps from a first scan acquired with conventional SENSE-accelerated 2D and 3D CEST data. The AS sensitivity maps were then applied to reconstruct the other CEST frames at higher acceleration factors. Both retrospective and prospective acceleration in phase-encoding and slice-encoding dimensions were implemented. RESULTS: Applying the 2D AS vSENSE algorithm to a 2-fold undersampled 3.5-ppm CEST frame halved the scan time of conventional SENSE, while generating essentially identical reconstruction errors (p ≈ 1.0). The 3D AS vSENSE algorithm permitted prospective acceleration by up to 8-fold, in total, from phase-encoding and slice-encoding directions for individual source CEST images, and an overall speed-up in scan time of 5-fold. The resulting vSENSE-accelerated amide proton transfer-weighted images agreed with conventional 2-fold-accelerated SENSE CEST results in brain tumor patients and healthy volunteers. Importantly, the vSENSE method eliminated unfolding artifacts in the slice-encoding direction that compromised conventional SENSE CEST scans. CONCLUSION: The vSENSE method can be extended to 3D CEST imaging to provide higher acceleration factors than conventional SENSE without compromising accuracy.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Algoritmos , Artefactos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
19.
Magn Reson Med ; 81(5): 2915-2923, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30697813

RESUMEN

PURPOSE: To investigate the effects of frequency drift on chemical exchange saturation transfer (CEST) imaging at 3T, and to propose a new sequence for correcting artifacts attributed to B0 drift in real time. THEORY AND METHODS: A frequency-stabilized CEST (FS-CEST) imaging sequence was proposed by adding a frequency stabilization module to the conventional non-frequency-stabilized CEST (NFS-CEST) sequence, which consisted of a small tip angle radiofrequency excitation pulse and readout of three non-phase-encoded k-space lines. Experiments were performed on an egg white phantom and 26 human subjects on a heavy-duty clinical scanner, in order to compare the difference of FS-CEST and NFS-CEST sequences for generating the z-spectrum, magnetization transfer ratio asymmetry (MTRasym ) spectrum, and amide proton transfer weighted (APTw) image. RESULTS: The B0 drift in CEST imaging, if not corrected, would cause APTw images and MTRasym spectra from both the phantom and volunteers to be either significantly higher or lower than the true values, depending on the status of the scanner. The FS-CEST sequence generated substantially more stable MTRasym spectra and APTw images than the conventional NFS-CEST sequence. Quantitatively, the compartmental-average APTw signals (mean ± standard deviation) from frontal white matter regions of all 26 human subjects were -0.32% ± 2.32% for the NFS-CEST sequence and -0.14% ± 0.37% for the FS-CEST sequence. CONCLUSIONS: The proposed FS-CEST sequence provides an effective approach for B0 drift correction without additional scan time and should be adopted on heavy-duty MRI scanners.


Asunto(s)
Clara de Huevo/química , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Convulsiones Febriles/diagnóstico por imagen , Algoritmos , Animales , Artefactos , Pollos , Niño , Preescolar , Mareo/diagnóstico por imagen , Femenino , Cefalea/diagnóstico por imagen , Humanos , Masculino , Fantasmas de Imagen , Ondas de Radio
20.
Magn Reson Med ; 82(5): 1812-1821, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31209938

RESUMEN

PURPOSE: To develop prospectively accelerated 3D CEST imaging using compressed sensing (CS), combined with a saturation scheme based on time-interleaved parallel transmission. METHODS: A variable density pseudo-random sampling pattern with a centric elliptical k-space ordering was used for CS acceleration in 3D. Retrospective CS studies were performed with CEST phantoms to test the reconstruction scheme. Prospectively CS-accelerated 3D-CEST images were acquired in 10 healthy volunteers and 6 brain tumor patients with an acceleration factor (RCS ) of 4 and compared with conventional SENSE reconstructed images. Amide proton transfer weighted (APTw) signals under varied RF saturation powers were compared with varied acceleration factors. RESULTS: The APTw signals obtained from the CS with acceleration factor of 4 were well-preserved as compared with the reference image (SENSE R = 2) both in retrospective phantom and prospective healthy volunteer studies. In the patient study, the APTw signals were significantly higher in the tumor region (gadolinium [Gd]-enhancing tumor core) than in the normal tissue (p < .001). There was no significant APTw difference between the CS-accelerated images and the reference image. The scan time of CS-accelerated 3D APTw imaging was dramatically reduced to 2:10 minutes (in-plane spatial resolution of 1.8 × 1.8 mm2 ; 15 slices with 4-mm slice thickness) as compared with SENSE (4:07 minutes). CONCLUSION: Compressed sensing acceleration was successfully extended to 3D-CEST imaging without compromising CEST image quality and quantification. The CS-based CEST imaging can easily be integrated into clinical protocols and would be beneficial for a wide range of applications.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Medios de Contraste , Compresión de Datos , Femenino , Voluntarios Sanos , Humanos , Masculino , Fantasmas de Imagen , Estudios Prospectivos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA