Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Luminescence ; 37(9): 1547-1556, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35816002

RESUMEN

Nifedipine (NDP), a dihydropyridine calcium antagonist, is widely used for the treatment of hypertension and angina pectoris. Catalase is a key antioxidant enzyme that is closely relevant to the level of reactive oxygen specie in vivo. Here, the research explored the effects of NDP on the conformation and catalytic function of bovine liver catalase (BLC) through enzymatic reaction kinetic techniques, multispectroscopic analysis, and computer simulation methods. Kinetic studies clarified that the NDP reduced the activity of BLC using a noncompetitive inhibition mechanism. Based on trial data, a static quenching mechanism functioned in quenching the intrinsic fluorescence of BLC. The binding constant value was (4.486 ± 0.008) × 104 M-1 (298 K) and BLC had one binding site for NDP. Tyr was prone to be exposed more to a hydrophilic environment in wake of a shift in fluorescence value. The binding reaction of BLC to NDP caused a conformational change in BLC, which in turn led to increase in the α-helix content and a decline in the ß-sheet content. Furthermore, several amino acids residues interacted with NDP by means of van der Waals forces, whereas Gln397, Asn368, Gln371, Asn384, and Pro377 formed several hydrogen bonds with NDP.


Asunto(s)
Hígado , Nifedipino , Animales , Sitios de Unión , Catalasa/química , Bovinos , Simulación por Computador , Cinética , Simulación del Acoplamiento Molecular , Nifedipino/metabolismo , Nifedipino/farmacología , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
2.
Luminescence ; 37(1): 4-13, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34499419

RESUMEN

Resorcinol (1,3-dihydroxybenzene) is a common coupling agent in permanent hair dyes, and has arrested people's attention for its potential hazard to human health. However, the action mechanism of resorcinol and human DNA has not been elucidated. In this research, the binding properties between resorcinol and calf thymus DNA (ct-DNA) were studied for the first time through various spectral and molecular docking techniques. Spectral studies showed that the initial fluorescence quenching of resorcinol against DNA was a static one. The result of ΔH < 0 and ΔS > 0 was produced from thermodynamic experimental data, therefore it could be concluded that electrostatic force was the major driving force, while binding constant Kb was 1.56 × 104 M-1 at 298 K. The electrostatic binding network between resorcinol and ct-DNA was established explicitly through competitive substitution analysis and other spectral approaches. The results of FT-IR absorption spectra indicated that resorcinol had bound to the DNA phosphate skeleton. Molecular docking clearly revealed that binding occurred between hydroxyl groups of resorcinol and phosphorus oxygen bonds (P-O) of the DNA skeleton. These findings may deepen our understanding of the action mechanism between resorcinol and ct-DNA and provide some useful data on the effect of resorcinol on human diseases.


Asunto(s)
ADN , Resorcinoles , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
3.
Int J Biol Macromol ; 256(Pt 2): 128529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042327

RESUMEN

Hyaluronic acid (HA) used as a food ingredient is gaining acceptance and popularity. However, the studies available for the effect of HA concentrations on the properties of ß-lactoglobulin (ß-LG) were limited. In this study, we investigated that the molecular characterization and functional properties of the complex formed by the non-covalent binding of ß-LG and HA, as well as the ultrasound-assisted treatment at acidic pH. The optimal pH and ratio of ß-LG/HA were set as 7 and 4:1, respectively. The fluorescence spectroscopy, circular dichroism spectroscopy, and molecular docking results revealed that the addition of HA and ultrasound induced a decrease in random coil and α-helix and an increase in ß-sheet contents in ß-LG. By the complexation with HA, the thermal stability, freezing stability, and antioxidant properties of ß-LG were all improved under ultrasound treatment. The results of the present study can be useful for the modulation of HA based biopolymer complexes and the exploitation as encapsulating or structuring agents in food industry.


Asunto(s)
Ácido Hialurónico , Lactoglobulinas , Dicroismo Circular , Simulación del Acoplamiento Molecular , Lactoglobulinas/química , Conformación Molecular , Espectrometría de Fluorescencia
4.
Ultrason Sonochem ; 92: 106240, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470128

RESUMEN

The ß-lactoglobulin-chlorogenic acid (LG-CA) conjugate was explored to be formed through ultrasonication, redox-pair method and their combination, the ultrasonication used a probe ultrasonic machine with a 6 mm probe at 270 W, and the frequency was 20-25 kHz. The formation of the conjugate was confirmed by SDS-PAGE with a larger molecular weight. Besides, Fourier infrared spectroscopy (FTIR) and Circular dichroism (CD) indicated changes in the secondary structure of the LG-CA conjugate. The α-helix and ß-sheet contents of LG decreased and the unordered content increased significantly after the formation of covalent complexes. In addition, both the ultrasonic treatment and its combination with redox-pair method could significantly improve the antioxidant properties of LG. The former increased to 23.16 µmol Trolox/g sample, the latter 82-106 µmol Trolox/g sample. Therefore, ultrasonication could be used both individually and in combination with the redox-pair method to produce LG-CA conjugates with stronger antioxidant activities.


Asunto(s)
Ácido Clorogénico , Lactoglobulinas , Lactoglobulinas/química , Antioxidantes/farmacología , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfa , Dicroismo Circular
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121335, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35526438

RESUMEN

Phthalate esters (PAEs) are widely used as plasticizer components in production. Methyl hydrogen phthalate (MHP) is a metabolite of dimethyl phthalate (DMP, a kind of PAEs), and its toxic residues accumulate in the nature and can enter the human body. Here, the interaction between MHP and human serum albumin (HSA) was probed by using multi-spectral, computer simulations, and biochemical techniques. The results showed that MHP was spontaneously embedded in site I of HSA to form a complex by H-bonds and van der Waals forces (ΔH < 0, ΔS < 0). The binding constant (Ka) of the HSA-MHP system was 1.136 ± 0.026 × 104 M-1 (298 K). The combination of MHP produced conformational variations of HSA, as shown by the 3D fluorescence spectrum, CD spectra, and molecular dynamics simulation. Additionally, molecular docking indicated that MHP was surrounded by multiple residues, such as Lys199, Leu203, Phe206, and Trp214. Specifically, Lys199 and Trp214 exerted a crucial effect on the interaction of HSA and MHP. The residues with important energy contribution were mostly located in site I. The ASA values of the aromatic amino acids of HSA changed after combining with MHP. The Rg and SASA values of HSA increased after adding MHP, suggesting that the structure of HSA was less compact. Moreover, the esterase-like activity of HSA increased after adding MHP to HSA, indicating that MHP may disturb the normal physiological activities in the human body. This study was helpful to understand the biological function of MHP and provided some insights for its side effect in the human body.


Asunto(s)
Hidrógeno , Albúmina Sérica Humana , Sitios de Unión , Dicroismo Circular , Ésteres , Humanos , Simulación del Acoplamiento Molecular , Ácidos Ftálicos , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia/métodos , Termodinámica
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120277, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34455384

RESUMEN

Dicofol, a broad-spectrum acaricide, has garnered considerable attention because of the potential harm to the environment and various organisms. Herein, this study applied spectroscopic and in silico methods to understand the interaction between human serum albumin (HSA) and dicofol. Fluorescence experiments demonstrated that dicofol formed a stable complex and the binding process occurred in Suldow's site I of HSA. Its binding constant was 2.26 × 105 M-1 at 298 K. Van der Waals forces and hydrogen bond were primarily facilitated the interaction between dicofol and HSA (ΔH < 0, ΔS < 0) according to thermodynamic experiments. Additionally, 3D fluorescence and circular dichroism (CD) spectra revealed a few conformational changes in HSA due to dicofol. Molecular docking analysis indicated that dicofol interacted with Ser192, Gln196, Leu481, Arg218, Leu238, and Phe211 via van der Waals forces and formed a hydrogen bond with His242. Molecular dynamics (MD) simulation showed that Lys195 and Arg218 residues contributed greater energy for forming the HSA-dicofol complex. MD simulation analysis also showed that dicofol can affect the HSA structure with a reduction in α-helix. This research is desired to facilitate a new perspective on the toxicity mechanism of dicofol in the human body.


Asunto(s)
Dicofol , Albúmina Sérica Humana , Sitios de Unión , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , Termodinámica
7.
Ultrason Sonochem ; 86: 106025, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35533432

RESUMEN

It is essential to understand the ultrasound-induced changes in assembly of proteins and polyphenols into non covalent nanocomplex. ß-Lactoglobulin (LG) and chlorogenic acid (CA) with various biological activities can be combined to form food-grade nanocomplexes. This study systematically explored the role of high-intensity ultrasound pretreatment on the binding mechanisms of LG and CA, and the potential biological function for embedding curcumin (Cur). The scanning electron microscopy (SEM) revealed that ultrasound treatment could destroy the structure of LG, and the particle size of the protein was reduced to<50 nm. The change in secondary structure of the protein by ultrasound treatment could be revealed by the fourier transform infrared (FTIR) and fluorescence spectra. Besides, it was found that LG and CA were combined to form a complex under the hydrophobic interaction, and CA was bound in the internal cavity of LG with a relatively extended conformation. The result demonstrated that the ratio of Cur embedded in the ultrasonic sample could be effectively increased by 7% - 10%, the particle size in the emulsion was smaller, and the dispersion was more stable. This work contributes to the development of protein-polyphenol functional emulsion systems with the ability to deliver Cur.


Asunto(s)
Curcumina , Lactoglobulinas , Ácido Clorogénico , Curcumina/química , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA