Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(1): 73-89, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112590

RESUMEN

Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.


Asunto(s)
Actinidia , Actinidia/genética , Mapeo Cromosómico , Genoma de Planta/genética , Ploidias , Cromosomas , Frutas/genética
2.
BMC Biol ; 21(1): 122, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226197

RESUMEN

BACKGROUND: The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS: The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS: This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.


Asunto(s)
Factores de Transcripción , Tricomas , Factores de Transcripción/genética , Tricomas/genética , Regulación de la Expresión Génica , Alelos , Genómica
3.
BMC Genomics ; 24(1): 370, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393222

RESUMEN

BACKGROUND: Mitogenome sizes of seed plants vary substantially even among closely related species, which are often related to horizontal or intracellular DNA transfer (HDT or IDT) events. However, the mechanisms of this size variation have not been well characterized. RESULTS: Here we assembled and characterized the mitogenomes of three species of Melastoma, a tropical shrub genus experiencing rapid speciation. The mitogenomes of M. candidum (Mc), M. sanguineum (Ms) and M. dodecandrum (Md) were assembled to a circular mapping chromosome of 391,595 bp, 395,542 bp and 412,026 bp, respectively. While the mitogenomes of Mc and Ms showed good collinearity except for a large inversion of ~ 150 kb, there were many rearrangements in the mitogenomes between Md and either Mc or Ms. Most non-alignable sequences (> 80%) between Mc and Ms are from gain or loss of mitochondrial sequences. Whereas, between Md and either Mc or Ms, non-alignable sequences in Md are mainly chloroplast derived sequences (> 30%) and from putative horizontal DNA transfers (> 30%), and those in both Mc and Ms are from gain or loss of mitochondrial sequences (> 80%). We also identified a recurrent IDT event in another congeneric species, M. penicillatum, which has not been fixed as it is only found in one of the three examined populations. CONCLUSIONS: By characterizing mitochondrial genome sequences of Melastoma, our study not only helps understand mitogenome size evolution in closely related species, but also cautions different evolutionary histories of mitochondrial regions due to potential recurrent IDT events in some populations or species.


Asunto(s)
Genoma Mitocondrial , Humanos , Cloroplastos , Inversión Cromosómica , ADN , Reordenamiento Génico
4.
BMC Genomics ; 24(1): 330, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322447

RESUMEN

BACKGROUND: Balanophoraceae plastomes are known for their highly condensed and re-arranged nature alongside the most extreme nucleotide compositional bias known to date, culminating in two independent reconfigurations of their genetic code. Currently, a large portion of the Balanophoraceae diversity remains unexplored, hindering, among others, evolutionary pattern recognition. Here, we explored newly sequenced plastomes of Sarcophyte sanguinea and Thonningia sanguinea. The reconstructed plastomes were analyzed using various methods of comparative genomics based on a representative taxon sampling. RESULTS: Sarcophyte, recovered sister to the other sampled Balanophoraceae s. str., has plastomes up to 50% larger than those currently published. Its gene set contains five genes lost in any other species, including matK. Five cis-spliced introns are maintained. In contrast, the Thonningia plastome is similarly reduced to published Balanophoraceae and retains only a single cis-spliced intron. Its protein-coding genes show a more biased codon usage compared to Sarcophyte, with an accumulation of in-frame TAG stop codons. Structural plastome comparison revealed multiple, previously unknown, structural rearrangements within Balanophoraceae. CONCLUSIONS: For the "minimal plastomes" of Thonningia, we propose a genetic code change identical to sister genus Balanophora. Sarcophyte however differs drastically from our current understanding on Balanophoraceae plastomes. With a less-extreme nucleotide composition, there is no evidence for an altered genetic code. Using comparative genomics, we identified a hotspot for plastome reconfiguration in Balanophoraceae. Based on previously published and newly identified structural reconfigurations, we propose an updated model of evolutionary plastome trajectories for Balanophoraceae, illustrating a much greater plastome diversity than previously known.


Asunto(s)
Balanophoraceae , Balanophoraceae/genética , Evolución Molecular , Secuencia de Bases , Evolución Biológica , Nucleótidos , Filogenia
5.
Mol Ecol ; 31(5): 1543-1561, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34910340

RESUMEN

Global climate changes during the Miocene may have created ample opportunities for hybridization between members of tropical and subtropical biomes at the boundary between these zones. Yet, very few studies have explored this possibility. The Yunnan-Guizhou Plateau (YGP) in Southwest China is a biodiversity hotspot for vascular plants, located in a transitional area between the floristic regions of tropical Southeast Asia and subtropical East Asia. The genus Eriobotrya (Rosaceae) comprises both tropical and subtropical taxa, with 12 species recorded in the YGP, making it a suitable basis for testing the hypothesis of between-biome hybridization. Therefore, we surveyed the evolutionary history of Eriobotrya by examining three chloroplast regions and five nuclear genes for 817 individuals (47 populations) of 23 Eriobotrya species (including 19 populations of 12 species in the YGP), plus genome re-sequencing of 33 representative samples. We concluded that: (1) phylogenetic positions for 16 species exhibited strong cytonuclear conflicts, most probably due to ancient hybridization; (2) the YGP is a hotspot for hybridization, with 11 species showing clear evidence of chloroplast capture; and (3) Eriobotrya probably originated in tropical Asia during the Eocene. From the Miocene onwards, the intensification of the Eastern Asia monsoon and global cooling may have shifted the tropical-subtropical boundary and caused secondary contact between species, thus providing ample opportunity for hybridization and diversification of Eriobotrya, especially in the YGP. Our study highlights the significant role that paleoclimate changes probably played in driving hybridization and generating rich species diversity in climate transition zones.


Asunto(s)
Eriobotrya , Evolución Biológica , China , Humanos , Filogenia , Filogeografía
6.
Mol Phylogenet Evol ; 175: 107581, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810973

RESUMEN

Sonerileae is a diverse Melastomataceae lineage comprising ca. 1000 species in 44 genera, with >70% of genera and species distributed in Asia. Asian Sonerileae are taxonomically intractable with obscure generic circumscriptions. The backbone phylogeny of this group remains poorly resolved, possibly due to complexity caused by rapid species radiation in early and middle Miocene, which hampers further systematic study. Here, we used genome resequencing data to reconstruct the phylogeny of Asian Sonerileae. Three parallel datasets, viz. single-copy ortholog (SCO), genomic SNPs, and whole plastome, were assembled from genome resequencing data of 205 species for this purpose. Based on these genome-scale data, we provided the first well resolved phylogeny of Asian Sonerileae, with 34 major clades identified and 74% of the interclade relationships consistently resolved by both SCO and genomic data. Meanwhile, widespread phylogenetic discordance was detected among SCO gene trees as well as species trees reconstructed using different tree estimation methods (concatenation/site-based coalescent method/summary method) or different datasets (SCO/genomic/plastome). We explored sources of discordance using multiple approaches and found that the observed discordance in Asian Sonerileae was mainly caused by a combination of biased distribution of missing data, random noise from uninformative genes, incomplete lineage sorting, and hybridization/introgression. Exploration of these sources can enable us to generate hypotheses for future testing, which is the first step towards understanding the evolution of Asian Sonerileae. We also detected high levels of homoplasy for some characters traditionally used in taxonomy, which explains current chaotic generic delimitations. The backbone phylogeny of Asian Sonerileae revealed in this study offers a solid basis for future taxonomic revision at the generic level.


Asunto(s)
Melastomataceae , Genómica/métodos , Hibridación Genética , Filogenia , Análisis de Secuencia de ADN
7.
Mol Phylogenet Evol ; 158: 107083, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33516804

RESUMEN

As a consequence of hybridization, polyploidization, and apomixis, the genus Cotoneaster (Rosaceae) represents one of the most complicated and controversial lineages in Rosaceae, with ca. 370 species which have been classified into two subgenera and several sections, and is notorious for its taxonomic difficulty. The infrageneric relationships and taxonomy of Cotoneaster have remained poorly understood. Previous studies have focused mainly on natural hybridization involving only several species, and phylogeny based on very limited markers. In the present study, the sequences of complete chloroplast genomes and 204 low-copy nuclear genes of 72 accessions, representing 69 species as ingroups, were used to conduct the most comprehensive phylogenetic analysis so far for Cotoneaster. Based on the sequences of complete chloroplast genomes and many nuclear genes, our analyses yield two robust phylogenetic trees respectively. Chloroplast genome and nuclear data confidently resolved relationships of this genus into two major clades which largely supported current classification based on morphological evidence. However, conflicts between the chloroplast genome and low-copy nuclear phylogenies were observed in both the species level and clade level. Cyto-nuclear discordance in the phylogeny could be caused by frequent hybridization events and incomplete sorting lineage (ILS). In addition, our divergence-time analysis revealed an evolutionary radiation of the genus from late Miocene to date.


Asunto(s)
Genoma del Cloroplasto , Rosaceae/genética , Evolución Biológica , Núcleo Celular/genética , ADN de Plantas/química , ADN de Plantas/metabolismo , Filogenia , Rosaceae/anatomía & histología , Rosaceae/clasificación , Análisis de Secuencia de ADN
8.
BMC Plant Biol ; 20(1): 199, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384868

RESUMEN

BACKGROUND: With three origins of holoparasitism, Orobanchaceae provides an ideal system to study the evolution of holoparasitic lifestyle in plants. The evolution of holoparasitism can be revealed by plastid genome degradation and coordinated changes in the nuclear genome, since holoparasitic plants lost the capability of photosynthesis. Among the three clades with holoparasitic plants in Orobanchaceae, only Clade VI has no available plastid genome sequences for holoparasitic plants. In this study, we sequenced the plastome and transcriptome of Aeginetia indica, a holoparasitic plant in Clade VI of Orobanchaceae, to study its plastome evolution and the corresponding changes in the nuclear genome as a response of the loss of photosynthetic function. RESULTS: The plastome of A. indica is reduced to 86,212 bp in size, and almost all photosynthesis-related genes were lost. Massive fragments of the lost plastid genes were transferred into the mitochondrial and/or nuclear genomes. These fragments could not be detected in its transcriptomes, suggesting that they were non-functional. Most protein coding genes in the plastome showed the signal of relaxation of purifying selection. Plastome and transcriptome analyses indicated that the photosynthesis pathway is completely lost, and that the porphyrin and chlorophyll metabolism pathway is partially retained, although chlorophyll synthesis is not possible. CONCLUSIONS: Our study suggests the loss of photosynthesis-related functions in A. indica in both the nuclear and plastid genomes. The lost plastid genes are transferred into its nuclear and/or mitochondrial genomes, and exist in very small fragments with no expression and are thus non-functional. The Aeginetia indica plastome also provides a resource for comparative studies on the repeated evolution of holoparasitism in Orobanchaceae.


Asunto(s)
Genoma de Plastidios , Orobanchaceae/genética , Fotosíntesis/genética , Evolución Molecular , Perfilación de la Expresión Génica
9.
BMC Evol Biol ; 17(1): 22, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100168

RESUMEN

BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes. CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.


Asunto(s)
Océanos y Mares , Rhizophoraceae/crecimiento & desarrollo , Análisis por Conglomerados , Flujo Génico , Variación Genética , Geografía , Funciones de Verosimilitud , Nucleótidos/genética , Filogenia , Dinámica Poblacional , Probabilidad , Factores de Tiempo
10.
Mol Ecol ; 26(13): 3405-3423, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370790

RESUMEN

Biological invasions that involve well-documented rapid adaptations to new environments provide unequalled opportunities for testing evolutionary hypotheses. Mikania micrantha Kunth (Asteraceae), a perennial herbaceous vine native to tropical Central and South America, successfully invaded tropical Asia in the early 20th century. It is regarded as one of the most aggressive weeds in the world. To elucidate the molecular and evolutionary processes underlying this invasion, we extensively sampled this weed throughout its invaded range in South-East and South Asia and surveyed its genetic structure using variants detected from population transcriptomics. Clustering results suggest that more than one source population contributed to this invasion. Computer simulations using genomewide genetic variation support a scenario of admixture and founder events during invasion. The genes differentially expressed between native and invasive populations were found to be involved in oxidative and high light intensity stress responses, pointing to a possible ecological mechanism of adaptation. Our results provide a foundation for further detailed mechanistic and population studies of this ecologically and economically important invasion. This line of research promises to provide new mitigation strategies for invasive species as well as insights into mechanisms of adaptation.


Asunto(s)
Efecto Fundador , Genética de Población , Especies Introducidas , Mikania/genética , Transcriptoma , Asia , Genes de Plantas , Variación Genética , Malezas/genética , América del Sur
11.
BMC Genomics ; 16: 605, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272068

RESUMEN

BACKGROUND: Acanthus is a unique genus consisting of both true mangrove and terrestrial species; thus, it represents an ideal system for studying the origin and adaptive evolution of mangrove plants to intertidal environments. However, little is known regarding the two respects of mangrove species in Acanthus. In this study, we sequenced the transcriptomes of the pooled roots and leaves tissues for a mangrove species, Acanthus ilicifolius, and its terrestrial congener, A. leucostachyus, to illustrate the origin of the mangrove species in this genus and their adaptive evolution to harsh habitats. RESULTS: We obtained 73,039 and 69,580 contigs with N50 values of 741 and 1557 bp for A. ilicifolius and A. leucostachyus, respectively. Phylogenetic analyses based on four nuclear segments and three chloroplast fragments revealed that mangroves and terrestrial species in Acanthus fell into different clades, indicating a single origin of the mangrove species in Acanthus. Based on 6634 orthologs, A. ilicifolius and A. leucostachyus were found to be highly divergent, with a peak of synonymous substitution rate (Ks) distribution of 0.145 and an estimated divergence time of approximately 16.8 million years ago (MYA). The transgression in the Early to Middle Miocene may be the major reason for the entry of the mangrove lineage of Acanthus into intertidal environments. Gene ontology (GO) classifications of the full transcriptomes did not show any apparent differences between A. ilicifolius and A. leucostachyus, suggesting the absence of gene components specific to the mangrove transcriptomes. A total of 99 genes in A. ilicifolius were identified with signals of positive selection. Twenty-three of the 99 positively selected genes (PSGs) were found to be involved in salt, heat and ultraviolet stress tolerance, seed germination and embryo development under periodic inundation. These stress-tolerance related PSGs may be crucial for the adaptation of the mangrove species in this genus to stressful marine environments and may contribute to speciation in Acanthus. CONCLUSIONS: We characterized the transcriptomes of one mangrove species of Acanthus, A. ilicifolius, and its terrestrial relative, A. leucostachyus, and provided insights into the origin of the mangrove Acanthus species and their adaptive evolution to abiotic stresses in intertidal environments.


Asunto(s)
Acanthaceae/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ADN/métodos , Humedales , Acanthaceae/clasificación , Acanthaceae/fisiología , Adaptación Biológica , Evolución Molecular , Ontología de Genes , Filogenia , Selección Genética
12.
BMC Plant Biol ; 15: 146, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26081944

RESUMEN

BACKGROUND: Natural hybridization in plants is universal and plays an important role in evolution. Based on morphology it has been presumed that hybridization occurred in the genus Buddleja, though genetic studies confirming this assumption have not been conducted to date. The two species B. crispa and B. officinalis overlap in their distributions over a wide range in South-West China, and we aimed to provide genetic evidence for ongoing hybridization in this study. RESULTS: We investigated the occurrence of hybrids between the two species at the southern-most edge of the distribution of B. crispa using five nuclear loci and pollination experiments. The genetic data suggest substantial differentiation between the two species as species-specific alleles are separated by at least 7-28 mutations. The natural hybrids found were nearly all F1s (21 of 23), but backcrosses were detected, and some individuals, morphologically indistinguishable from the parental species, showed introgression. Pollen viability test shows that the percentage of viable pollen grains was 50 ± 4% for B. crispa, and 81 ± 2% for B. officinalis. This difference is highly significant (t = 7.382, p < 0.0001). Hand cross-pollination experiments showed that B. crispa is not successful as pollen-parent, but B. officinalis is able to pollinate B. crispa to produce viable hybrid seed. Inter-specific seed-set is low (8 seeds per fruit, as opposed to about 65 for intra-specific pollinations), suggesting post-zygotic reproductive barriers. In addition, one of the reference populations also suggests a history of introgression at other localities. CONCLUSIONS: The occurrence of morphologically intermediate individuals between B. crispa and B. officinalis at Xishan Mountain is unequivocally linked to hybridization and almost all examined individuals of the putative hybrids were likely F1s. Despite pollination experiments indicating higher chances for introgression into B. officinalis (hybrids only produced viable seed when crossed with B. officinalis), observed introgression was asymmetrical into B. crispa. This could be due to seeds produced by hybrids not contributing to seedlings, or other factors favoring the establishment of backcrosses towards B. crispa. However, further research will be needed to confirm these observations, as the small number of plants used for the pollination experiments could have introduced an artifact, for example if used individuals were more or less compatible than the species average, and also the small number of loci used could convey a picture of introgression that is not representative for the whole genome.


Asunto(s)
Buddleja/genética , Hibridación Genética , Endogamia , Buddleja/anatomía & histología , Núcleo Celular/genética , Dosificación de Gen , Genes de Plantas , Geografía , Haplotipos/genética , Polen/fisiología , Polinización , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Int J Mol Sci ; 17(1)2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26703583

RESUMEN

Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1) cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1). SaCSD1 comprised a complete open reading frame (ORF) of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%-90%) with the superoxide dismutase (CSD) of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I) vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO), glycerol, and chloroform, and was reduced to a great extent in ß-mercaptoethanol, sodium dodecyl sulfate (SDS), H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR) assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves.


Asunto(s)
Avicennia/enzimología , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Avicennia/genética , Secuencia de Bases , Secuencia Conservada , Estabilidad de Enzimas , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Especificidad de Órganos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tolerancia a la Sal , Especificidad por Sustrato , Superóxido Dismutasa/química , Superóxido Dismutasa/genética
14.
BMC Plant Biol ; 14: 275, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25300306

RESUMEN

BACKGROUND: Interspecific hybridization has long been recognized as a pivotal process in plant evolution and speciation. It occurs fairly common in the genera of the subtribe Pyrinae. In Eriobotrya, a small tree genus of Pyrinae, E. prinoides var. daduheensis has been recognized as either a variety of E. prinoides, a natural hybrid between E. prinoides and E. japonica, or a variety of E. japonica. However, to date, there has been no convincing evidence on its status. RESULTS: Four nuclear genes and two chloroplast regions were sequenced in 89 individuals of these three Eriobotrya taxa from two locations where they coexist. A few fixed nucleotide substitutions or gaps were found in each of the investigated nuclear and chloroplast loci between E. japonica and E. prinoides. Of the 35 individuals of E. prinoides var. daduheensis, 33 showed nucleotide additivity of E. japonica and E. prinoides in at least one nuclear gene, and 10 of them harboured nucleotide additivity at all the four nuclear genes. Most haplotypes of E. prinoides var. daduheensis were also shared with those of E. japonica and E. prinoides. In the two chloroplast regions, 28 and 7 individuals were identical with E. japonica and E. prinoides, respectively. CONCLUSIONS: Our study provides compelling evidence for a hybrid status for E. prinoides var. daduheensis. Most hybrid individuals are later-generation hybrids. Both E. japonica and E. prinoides can serve as female parent. Differential adaptation might maintain the species boundary of E. prinoides and E. japonica in the face of hybridization and potential introgression.


Asunto(s)
Eriobotrya/genética , Hibridación Genética , Eriobotrya/fisiología
15.
Proc Natl Acad Sci U S A ; 108(38): 16122-7, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21900601

RESUMEN

Polyploidy has been a common process during the evolution of eukaryotes, especially plants, leading to speciation and the evolution of new gene functions. Gene expression levels and patterns can change, and gene silencing can occur in allopolyploids--phenomena sometimes referred to as "transcriptome shock." Alternative splicing (AS) creates multiple mature mRNAs from a single type of precursor mRNA. Here we examined the evolution of AS patterns after polyploidy, with natural and two resynthesized allotetraploid Brassica napus lines, using RT-PCR and sequencing assays of 82 AS events in duplicated gene pairs (homeologs). Comparing the AS patterns between the two homeologs in natural B. napus revealed that many of the gene pairs show different AS patterns, with a few showing variation that was organ specific or induced by abiotic stress treatments. In the resynthesized allotetraploids, 26-30% of the duplicated genes showed changes in AS compared with the parents, including many cases of AS event loss after polyploidy. Parallel losses of many AS events after allopolyploidy were detected in the two independently resynthesized lines. More changes occurred in parallel between the two lines than changes specific to each line. The PASTICCINO gene showed partitioning of two AS events between the two homeologs in the resynthesized allopolyploids. AS changes after allopolyploidy were much more common than homeolog silencing. Our findings indicate that AS patterns can change rapidly after polyploidy, that many genes are affected, and that AS changes are an important component of the transcriptome shock experienced by new allopolyploids.


Asunto(s)
Empalme Alternativo/genética , Brassica/genética , Evolución Molecular , Poliploidía , Secuencia de Bases , Brassica/clasificación , Brassica napus/genética , Brassica rapa/genética , Cotiledón/genética , Regulación de la Expresión Génica de las Plantas , Genes Duplicados/genética , Genes de Plantas/genética , Hojas de la Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , Temperatura
16.
Zhongguo Zhong Yao Za Zhi ; 39(16): 3023-9, 2014 Aug.
Artículo en Zh | MEDLINE | ID: mdl-25509281

RESUMEN

In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P < 0.05). Furthermore, two types of active chemicals, total volatile oils by water vapor distillation method and galangin by methanol extraction-HPLC method, were examined in the each tissue of the tested plant. Both of tested components were detected in all of the four tissues of the medicine plant with varying contents. And the highest was in rhizome tissue. Correlation analysis revealed there were significant negative correlations between both of the tested active components contents and calculated Shannon's diversity index, as well as the Shannon's evenness index of the fungal endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and 325 bp dominant T-RF linkage to Pestalotiopsis (P = 0, Pearson correlation coefficient ≥ 0.975). In conclusion, A. officinarum is colonized by diverse fungal endophytes communities. The diversity of the fungal endophytes was found in the A. officinarum varied with differences of the tissue types of the host plants and was closely correlated with the accumulation of main active components, total volatile oils and galangin contents in the host plant tissue.


Asunto(s)
Alpinia/microbiología , Biodiversidad , Endófitos/aislamiento & purificación , Hongos/aislamiento & purificación , Plantas Medicinales/microbiología , Alpinia/química , China , ADN de Hongos/genética , ADN Ribosómico/genética , Medicamentos Herbarios Chinos/análisis , Endófitos/clasificación , Endófitos/genética , Endófitos/crecimiento & desarrollo , Hongos/clasificación , Hongos/genética , Hongos/crecimiento & desarrollo , Filogenia , Plantas Medicinales/química , Polimorfismo de Longitud del Fragmento de Restricción
17.
Front Plant Sci ; 15: 1385210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721336

RESUMEN

Understanding the genetic basis of local adaption is crucial in the context of global climate change. Mangroves, as salt-tolerant trees and shrubs in the intertidal zone of tropical and subtropical coastlines, are particularly vulnerable to climate change. Kandelia obovata, the most cold-tolerant mangrove species, has undergone ecological speciation from its cold-intolerant counterpart, Kandelia candel, with geographic separation by the South China Sea. In this study, we conducted whole-genome re-sequencing of K. obovata populations along China's southeast coast, to elucidate the genetic basis responsible for mangrove local adaptation to climate. Our analysis revealed a strong population structure among the three K. obovata populations, with complex demographic histories involving population expansion, bottleneck, and gene flow. Genome-wide scans unveiled pronounced patterns of selective sweeps in highly differentiated regions among pairwise populations, with stronger signatures observed in the northern populations compared to the southern population. Additionally, significant genotype-environment associations for temperature-related variables were identified, while no associations were detected for precipitation. A set of 39 high-confidence candidate genes underlying local adaptation of K. obovata were identified, which are distinct from genes under selection detected by comparison between K. obovata and its cold-intolerant relative K. candel. These results significantly contribute to our understanding of the genetic underpinnings of local adaptation in K. obovata and provide valuable insights into the evolutionary processes shaping the genetic diversity of mangrove populations in response to climate change.

18.
Hortic Res ; 11(3): uhae009, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38464478

RESUMEN

Variegated plants often exhibit plastomic heteroplasmy due to single-nucleotide mutations or small insertions/deletions in their albino sectors. Here, however, we identified a plastome structural variation in albino sectors of the variegated plant Dianella tasmanica (Asphodelaceae), a perennial herbaceous plant widely cultivated as an ornamental in tropical Asia. This structural variation, caused by intermolecular recombination mediated by an 11-bp inverted repeat flanking a 92-bp segment in the large single-copy region (LSC), generates a giant plastome (228 878 bp) with the largest inverted repeat of 105 226 bp and the smallest LSC of 92 bp known in land plants. It also generates an ~7-kb deletion on the boundary of the LSC, which eliminates three protein coding genes (psbA, matK, and rps16) and one tRNA gene (trnK). Albino sectors exhibit dramatic changes in expression of many plastid genes, including negligible expression of psbA, matK, and rps16, reduced expression of photosynthesis-related genes, and increased expression of genes related to the translational apparatus. Microscopic and ultrastructure observations showed that albino tissues were present in both green and albino sectors of the variegated individuals, and chloroplasts were poorly developed in the mesophyll cells of the albino tissues of the variegated individuals. These poorly developed chloroplasts likely carry the large and rearranged plastome, which is likely responsible for the loss of photosynthesis and albinism in the leaf margins. Considering that short repeats are relatively common in plant plastomes and that photosynthesis is not necessary for albino sectors, structural variation of this kind may not be rare in the plastomes of variegated plants.

19.
Mitochondrial DNA B Resour ; 9(1): 128-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38259357

RESUMEN

The mitogenome of Bauhinia variegate was assembled and characterized in this study. The mitogenome size was 437,271 bp, and its GC content was 45.5%. 36 protein-coding genes, 17 tRNAs and 3 rRNAs were annotated in the mitogenome. A total of 12 MTPTs, ranging from 71 bp to 3562 bp, were identified in the mitogenome and covered 1.46% (6373 bp) of the mitogenome. Phylogenetic analysis of 15 species of Leguminosae based on 23 core protein-coding genes showed that B. variegata was sister to Tylosema esculentum, another member from the subfamily Cercidoideae. The mitogenome of B. variegata provides a valuable genetic resource for further phylogenetic studies of this family.

20.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886388

RESUMEN

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Asunto(s)
Biodiversidad , Magnoliopsida , Filogenia , China , Magnoliopsida/crecimiento & desarrollo , Altitud , Fenómenos Geológicos , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA