Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 582(7810): 55-59, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494077

RESUMEN

The ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer1-10. Water droplets that contact these surfaces must have large apparent contact angles (greater than 150 degrees) and small roll-off angles (less than 10 degrees). This can be realized for surfaces that have low-surface-energy chemistry and micro- or nanoscale surface roughness, minimizing contact between the liquid and the solid surface11-17. However, rough surfaces-for which only a small fraction of the overall area is in contact with the liquid-experience high local pressures under mechanical load, making them fragile and highly susceptible to abrasion18. Additionally, abrasion exposes underlying materials and may change the local nature of the surface from hydrophobic to hydrophilic19, resulting in the pinning of water droplets to the surface. It has therefore been assumed that mechanical robustness and water repellency are mutually exclusive surface properties. Here we show that robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellency and a microstructure design to provide durability. The microstructure is an interconnected surface frame containing 'pockets' that house highly water-repellent and mechanically fragile nanostructures. This surface frame acts as 'armour', preventing the removal of the nanostructures by abradants that are larger than the frame size. We apply this strategy to various substrates-including silicon, ceramic, metal and transparent glass-and show that the water repellency of the resulting superhydrophobic surfaces is preserved even after abrasion by sandpaper and by a sharp steel blade. We suggest that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells. Our design strategy could also guide the development of other materials that need to retain effective self-cleaning, anti-fouling or heat-transfer abilities in harsh operating environments.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Incrustaciones Biológicas/prevención & control , Agua/química
2.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001109

RESUMEN

Elbow computerized tomography (CT) scans have been widely applied for describing elbow morphology. To enhance the objectivity and efficiency of clinical diagnosis, an automatic method to recognize, segment, and reconstruct elbow joint bones is proposed in this study. The method involves three steps: initially, the humerus, ulna, and radius are automatically recognized based on the anatomical features of the elbow joint, and the prompt boxes are generated. Subsequently, elbow MedSAM is obtained through transfer learning, which accurately segments the CT images by integrating the prompt boxes. After that, hole-filling and object reclassification steps are executed to refine the mask. Finally, three-dimensional (3D) reconstruction is conducted seamlessly using the marching cube algorithm. To validate the reliability and accuracy of the method, the images were compared to the masks labeled by senior surgeons. Quantitative evaluation of segmentation results revealed median intersection over union (IoU) values of 0.963, 0.959, and 0.950 for the humerus, ulna, and radius, respectively. Additionally, the reconstructed surface errors were measured at 1.127, 1.523, and 2.062 mm, respectively. Consequently, the automatic elbow reconstruction method demonstrates promising capabilities in clinical diagnosis, preoperative planning, and intraoperative navigation for elbow joint diseases.


Asunto(s)
Algoritmos , Articulación del Codo , Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Humanos , Articulación del Codo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Radio (Anatomía)/diagnóstico por imagen , Cúbito/diagnóstico por imagen , Húmero/diagnóstico por imagen
3.
Anal Chem ; 95(4): 2294-2302, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36654498

RESUMEN

The flow cytometer has become a powerful and widely accepted measurement device in both biological studies and clinical diagnostics. The application of the flow cytometer in emerging point-of-care scenarios, such as instant detection in remote areas and emergency diagnosis, requires a significant reduction in physical dimension, cost, and power consumption. This requirement promotes studies to develop portable flow cytometers, mostly based on the utilization of polymer microfluidic chips. However, due to the relatively poor optical performance of polymer materials, existing microfluidic flow cytometers are incapable of accurate blood analysis, such as the four-part leukocyte differential count, which is necessary to monitor the immune system and to assess the risk of allergic inflammation or viral infection. To address this issue, an ultraportable flow cytometer based on an all-glass microfluidic chip (AG-UFCM) has been developed in this study. Compared with that of a typical commercial flow cytometer (BD FACSAria III), the volume of the AG-UFCM was reduced by 90 times (from 720 to 8 L). A two-step laser processing was employed to fabricate an all-glass microfluidic chip with a surface roughness of less than 1 nm, significantly improving the optical performance of on-chip micro-lens. The signal-to-noise ratio was enhanced by 3 dB, compared with that of polymer materials. For the first time, a four-part leukocyte differential count based on single fluorescence staining was realized using a miniaturized flow cytometer, laying a foundation for the point-of-care testing of miniaturized flow cytometers.


Asunto(s)
Lentes , Técnicas Analíticas Microfluídicas , Microfluídica , Citometría de Flujo/métodos , Polímeros
4.
Langmuir ; 39(28): 9924-9931, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37369105

RESUMEN

Precision glass molding (PGM) has become an efficacious technique to fabricate high-precision optics. Chalcogenide (ChG) glass is increasingly used in thermal imaging, night vision, etc., because of its excellent infrared optical properties. Nevertheless, glass-mold interfacial adhesion has emerged as a pivotal issue within the PGM process. The interfacial adhesion during PGM has the potential to significantly undermine the performance of molded optics and reduce the longevity of molds. It is important to investigate interfacial adhesion behaviors in the PGM. In this study, the interfacial adhesion mechanism between ChG glass and the nickel-phosphorus (Ni-P) mold is analyzed using the cylindrical compression test. The effect of ChG glass internal stress on physical adhesion is investigated by finite element method (FEM) simulation. The spherical preform is proven to be capable of reducing the stress concentration and preventing physical adhesion. More importantly, a rhenium-iridium (Re-Ir) alloy coating is deposited on the Ni-P mold surface by ion sputtering to prevent atomic diffusion and resolve the problem of chemical adhesion. Finally, ChG glass microstructures with high accuracy are fabricated using the spherical ChG glass preform and the Re-Ir-coated Ni-P mold by PGM.

5.
Opt Express ; 30(15): 26581-26596, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236846

RESUMEN

Aspheric cylindrical lenses, including fast axis collimators (FACs), are commonly used to collimate laser beams in the fast axis direction. Precision glass molding (PGM) is applied in the production of these optical lenses due to its high accuracy and efficiency. However, the profile errors and surface topography transferred from the mold reduce the optical performance of aspheric cylindrical lenses. In this paper, the surface errors of a FAC fabricated by combining ultraprecision diamond cutting and precision glass molding are analyzed. An optical simulation model is then established to qualitatively analyze the effects of tool marks on the optical defects, and the numerical calculations are carried out to determine the relative intensity distribution of light spots. Experiments are conducted to verify the theoretical results, which prove that the tool marks cause diffractive fringes and that the geometric parameters of the tool marks that are caused by cutting conditions affect the distribution of the fringe line defects. Finally, the critical conditions to eliminate diffractive fringes and improve the optical performance of the FAC are determined based on the experimental results.

6.
Opt Lett ; 47(11): 2730-2733, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648916

RESUMEN

Integrating geometric and diffractive optics functions is urgently needed to develop compact equipment for integrating diffraction manipulation and arrayed outputs. In this Letter, a superimposed three-level-grooved surface is proposed to manipulate the diffraction of visible light and provide an array output. Structure design, vibration-assisted fly-cutting, finite-difference time-domain calculations, and diffraction tests are conducted to fabricate the three-level grooves and explore the diffraction mechanism. Nanogrooves with a period close to the middle wavelength of the spectrum primarily enhances the diffraction at low diffraction orders and angles because of resonance. Optical tests prove that these superimposed three-level nanogrooves have a large bandwidth when providing the array output and serving to control and transmit diffracted light. They also show stronger performance for manipulating low diffraction orders.

7.
Opt Express ; 29(6): 9294-9311, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820361

RESUMEN

The structural coloration of glass induced by submicron structures is eco-friendly, ink-free, and has profound scientific significance. However, it is difficult to manufacture the submicron structures for glass optics due to the high hardness of glass and the miniature size of the microstructures. In this paper, the diffraction manipulation mechanism of groove shape to structural coloration and optimization theory are studied by establishing the theoretical and simulation mode. Moreover, a newly-developed axial-feed fly-cutting (AFC) technology and the PGM technology are introduced to precisely create the designed submicron V-shape grooves and structural color pattern on a Ni-P mold and then replicating them on a glass surface. Between these two kinds of typical submicron grooves that can be machined by mechanical cutting technology, it is found that the diffraction intensity and efficiency of V-shape grooves are higher than these of jagged-shape grooves, which indicates that V-shape grooves is more suitable to be used for structural coloration with high brightness. The structural color resolution is dramatically increased with the reduction of groove spacing and can be flexibly regulated by AFC, which significantly contributes to the structural coloration manufacturing. Structural pixel segments composed of submicron grooves are arranged row-by-row to form color patterns, and the letters of different colors are fabricated on the mold and transferred to the glass surface. Methods of optical diffraction manipulation, flexible manufacturing of submicron structures, and structural color image construction proposed in this paper for the production of a structural color pattern are beneficial to a wide range of fields.

8.
Appl Opt ; 60(19): 5652-5661, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263858

RESUMEN

The construction of a smart city puts forward new requirements for lighting systems, such as variable color temperature adapting to environment and low energy consumption. We introduce a variable color temperature laser lighting system that produces uniform light with minimum energy. The color temperature is controlled by tri-color RGB diode lasers, and uniform lighting is achieved by microlens arrays. Tri-color diode lasers with wavelengths of 650, 556, and 450 nm are used as the lighting sources, and the white light laser output is achieved by combining the three beams. The color temperature is controlled by changing the power ratio of each lighting source. Finally, the homogenization of laser energy is regulated by the microlens arrays, and the energy uniformity reaches 91.1%. Moreover, we do an experiment to compare LED street lighting and laser street lighting, finding that the street lighting system with this design can increase the energy utilization rate by 113.33%, and the color temperature of the car headlamps with this design can be changed according to the environment. Therefore, this laser lighting system is an effective solution for modern smart lighting systems and energy saving, which have vast application.

9.
J Manuf Sci Eng ; 141(8)2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32728336

RESUMEN

Injection molding of plastic optical lenses prevails over many other techniques in both efficiency and cost, however polymer shrinkage during cooling, high level of uneven residual stresses and refractive index variations have limited its potential use for high precision lenses fabrication. In this research, we adopted a newly-developed strong graphene network to both plain and convex fused silica mold surfaces and proposed a novel injection molding of plano-concave lenses with graphene coated fused silica molds. The unique combination of the graphene coating and fused silica substrate maximize the mechanical properties of the mold and coating materials, namely high hardness, low surface friction, and high heat preservation effect during cooling since fused silica has low thermal conductivity. This advanced injection molding process was implemented in molding of plano-concave lenses resulting in reduced polymer shrinkage. In addition, internal residual stresses, and refractive index variations were also analyzed and discussed in detail. Meanwhile, as a comparison of conventional injection mold material, aluminum mold inserts with the same shape and size were also diamond machined and then employed to mold the same plano-concave lenses. Finally, a simulation model using Moldex3D was utilized to interpret stress distributions of both graphene and aluminum molds and then validated by experiments. The comparison between graphene and aluminum molds reveals that the novel injection molding with carbide-bonded graphene coated fused silica mold inserts is capable of molding high quality optical lenses with much less shrinkage and residual stresses, but more uniform refractive index distribution.

10.
Appl Opt ; 56(23): 6622-6630, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29047954

RESUMEN

To study the effects of the interface thermal resistance on surface morphology evolution in precision glass molding (PGM) for microlens array with different mold materials, including Tungsten carbide and heat-resistant stainless steel, the glass-mold interface thermal resistance is calculated, and heat-transfer simulation of PGM based on an interface thermal resistance model at the heating stage is conducted correspondingly. The effect of flattening behavior on the glass-mold interface is explained. Then, experiments evaluating the relationship between heating time and glass surface roughness are carried out, and the glass adhesion phenomenon appearing on the heat-resistant stainless steel mold is observed and analyzed. Finally, the microlens array is fabricated on the nickel phosphorous plating layer on the heat-resistant stainless steel substrate by diamond-ball nose-end milling, and experiments of PGM for the microlens array are carried out to verify the interface thermal resistance model. The result shows that a high-quality surface can be obtained by the combination of a smooth mold and rough glass. Compared with the microlens array fabricated with the rough glass preform, using the smooth glass preform achieves higher form accuracy without defects or blurs.

11.
Appl Opt ; 56(30): 8394-8402, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29091618

RESUMEN

Chalcogenide glass (ChG) is increasingly used in infrared optical systems owing to its excellent infrared optical properties and scalable production using precision glass molding (PGM). However, surface scratches affected by the molding temperature and microdimples on the lens surface caused by gas release seriously impair the quality of the formed lens. To reduce these surface defects when molding Ge22Se58As20 ChG, the temperature effect must be studied, and the gas generation must be minimized, while the gas escape must be maximized. In this work, we studied the effect of temperature on the surface defects. Additionally, we studied the influences of the roughness and curvature of the contact surfaces, as well as the pressing force on the formation of the microdimples. It was found that the molding temperature should be approximately 30°C higher than the softening temperature (Ts) to avoid surface scratches. The gas generation could be inhibited by increasing the pressing force and decreasing the roughness of the mold surface, and finally, increasing the curvature difference between the mold and glass preform surfaces improved the gas escape.

12.
Microsyst Nanoeng ; 10: 48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590817

RESUMEN

Double-sided microlens arrays (DSMLAs) include combinations of two single-sided MLAs to overcome positioning errors and greatly improve light transmissivity compared to other types of lenses. Precision glass molding (PGM) is used to fabricate DSMLAs, but controlling alignment errors during this process is challenging. In this paper, a mold assembly was manufactured with a novel combination of materials to improve the alignment accuracy of mold cores during PGM by using the nonlinear thermal expansion characteristics of the various materials to improve the DSMLA alignment accuracy. By establishing a mathematical model of the DSMLA alignment error and a thermal expansion model of the mold-sleeve pair, the relationship between the maximum alignment error of the DSMLA and the mold-sleeve gap was determined. This research provides a method to optimize the mold-sleeve gap and minimize the alignment error of the DSMLA. The measured DSMLA alignment error was 10.56 µm, which is similar to the predicted maximum alignment error. Optical measurements showed that the uniformity of the homogenized beam spot was 97.81%, and the effective homogeneous area accounted for 91.66% of the total area. This proposed method provides a novel strategy to improve the performance of DSMLAs.

13.
Micromachines (Basel) ; 14(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374747

RESUMEN

Microlens arrays have been widely employed to control the reflection, refraction, and diffraction characteristics of light due to its distinctive surface properties. Precision glass molding (PGM) is the primary method for the mass production of microlens arrays, of which pressureless sintered silicon carbide (SSiC) is a typical mold material due to its excellent wear resistance, high thermal conductivity, high-temperature resistance, and low thermal expansion. However, the high hardness of SSiC makes it hard to be machined, especially for optical mold material that requires good surface quality. The lapping efficiency of SSiC molds is quite low. and the underlying mechanism remains insufficiently explored. In this study, an experimental study has been performed on SSiC. A spherical lapping tool and diamond abrasive slurry have been utilized and various parameters have been carried out to achieve fast material removal. The material removal characteristics and damage mechanism have been illustrated in detail. The findings reveal that the material removal mechanism involves a combination of ploughing, shearing, micro-cutting, and micro-fracturing, which aligns well with the results obtained from finite element method (FEM) simulations. This study serves as preliminary reference for the optimization of the precision machining of SSiC PGM molds with high efficiency and good surface quality.

14.
Micromachines (Basel) ; 13(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35056305

RESUMEN

Percutaneous coronary intervention (PCI) with stent implantation is one of the most effective treatments for cardiovascular diseases (CVDs). However, there are still many complications after stent implantation. As a medical device with a complex structure and small size, the manufacture and post-processing technology greatly impact the mechanical and medical performances of stents. In this paper, the development history, material, manufacturing method, and post-processing technology of vascular stents are introduced. In particular, this paper focuses on the existing manufacturing technology and post-processing technology of vascular stents and the impact of these technologies on stent performance is described and discussed. Moreover, the future development of vascular stent manufacturing technology will be prospected and proposed.

15.
J Food Biochem ; 46(1): e14002, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850407

RESUMEN

In recent years, the increasing obese and overweight population has become a worldwide public health problem, as there is no effective medication to control obesity. Auricularia heimuer is rich in active substances that have potential biologically active functions. The anti-obesity effect and mechanism of Auricularia heimuer fruiting body alcohol extraction (AHA, 150-600 mg/kg·bw) was investigated in obese mice by assessing changes in endogenous liver metabolites using a liquid chromatography-tandem mass spectrometry approach. The aim of this study was to identify an effective food to control human obesity. AHA of 600 mg/kg·bw (HC) significantly decreased body weight and improved serum biochemistry indices. Sixty-eight liver metabolites were identified and significantly separated among the normal, high-fat diet (HFD), and HC groups. Moreover, the metabolic analysis revealed that HC significantly regulated specific metabolites in mice including amino acids, lipids, and carbohydrate compounds. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that HC was significantly involved in different metabolite pathways including arachidonic acid metabolism, galactose metabolism, carbohydrate digestion and absorption, linoleic acid metabolism, and starch and sucrose metabolism. Eight weeks after supplementing with HC, major metabolites in related pathways that were disrupted by an HFD were restored to normal levels, suggesting that HC had anti-obesity activity.


Asunto(s)
Obesidad , Espectrometría de Masas en Tándem , Animales , Auricularia , Cromatografía Liquida , Ratones , Ratones Obesos , Obesidad/etiología , Obesidad/genética
16.
ACS Omega ; 6(10): 6757-6765, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33748589

RESUMEN

The current research on gecko-inspired dry adhesives is focused on micropillar arrays with different terminal shapes, such as flat, spherical, mushroom, and spatula tips. The corresponding processing methods are mostly chemical methods, including lithography, etching, and deposition, which not only are complex, expensive, and environmentally unfriendly, but also cannot completely ensure microstructural integrity or performance stability. The present study demonstrates a high-precision, high-efficiency, and green method for the fabrication of a gecko-inspired surface, which can promote its application in dexterous robot hands and mechanical grippers. Based on the bendable lamellar structures of the gecko, annular wedge adhesive surfaces that stick to the finger surfaces of dexterous robot hands to improve their load capacity are proposed and fabricated via a suitable combined processing method of ultraprecision machining and replica molding. The greater the width, the higher the replication integrity, and when the minimum width is 20 µm, the replication error is less than 5.5% due to the superior processing performance of the nickel-phosphorus (Ni-P) plating of the master mold. The fabricated annular wedge structures with an optimized width of 20 µm not only exhibit a strong friction force of up to 35.48 mN under a preload of 20 mN in the GCr15/poly(dimethylsiloxane) (PDMS) friction pair but also demonstrate an obviously improved anisotropic friction characteristic of up to λ = 1.36, as the molecular force exhibits a stronger increase as compared to the decrease of the mechanical force of the structure with a small width.

17.
Micromachines (Basel) ; 9(6)2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-30424202

RESUMEN

Compared with polymer-based biochips, such as polydimethylsiloxane (PDMS), glass based chips have drawn much attention due to their high transparency, chemical stability, and good biocompatibility. This paper investigated the glass molding process (GMP) for fabricating microstructures of microfluidic chips. The glass material was D-ZK3. Firstly, a mold with protrusion microstructure was prepared and used to fabricate grooves to evaluate the GMP performance in terms of roughness and height. Next, the molds for fabricating three typical microfluidic chips, for example, diffusion mixer chip, flow focusing chip, and cell counting chip, were prepared and used to mold microfluidic chips. The analysis of mold wear was then conducted by the comparison of mold morphology, before and after the GMP, which indicated that the mold was suitable for GMP. Finally, in order to verify the performance of the molded chips by the GMP, a mixed microfluidic chip was chosen to conduct an actual liquid filling experiment. The study indicated that the fabricating microstructure of glass microfluidic chip could be finished in 12 min with good surface quality, thus, providing a promising method for achieving mass production of glass microfluidic chips in the future.

18.
Micromachines (Basel) ; 9(7)2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-30424270

RESUMEN

Chalcogenide glass (ChG) is increasingly demanded in infrared optical systems owing to its excellent infrared optical properties. ChG infrared optics including ChG aspherical and freeform optics are mainly fabricated using the single point diamond turning (SPDT) technique, which is characterized by high cost and low efficiency. This paper presents an overview of the ChG infrared optics fabrication technique through precision glass molding (PGM). It introduces the thermo-mechanical properties of ChG and models the elastic-viscoplasticity constitutive of ChG. The forming accuracy and surface defects of the formed ChG are discussed, and the countermeasures to improve the optics quality are also reviewed. Moreover, the latest advancements in ChG precision molding are detailed, including the aspherical lens molding process, the ChG freeform optics molding process, and some new improvements in PGM.

19.
Micromachines (Basel) ; 9(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30715067

RESUMEN

Tool wear is a significant issue for the application of micro end mills. This can be significantly improved by coating materials on tool surfaces. This paper investigates the effects of different coating materials on tool wear in the micro milling of Ti-6Al-4V. A series of cutting experiments were conducted. The tool wear and workpiece surface morphology were investigated by analyzing the wear of the end flank surface and the total cutting edge. It was found that, without coating, serious tool wear and breakage occurred easily during milling. However, AlTiN-based and AlCrN-based coatings could highly reduce cutting edge chipping and flank wear. Specifically, The AlCrN-based coated mill presented less fracture resistance. For TiN coated micro end mill, only slight cutting edge chipping occurred. Compared with other types of tools, the AlTiN-based coated micro end mill could maximize tool life, bringing about an integrated cutting edges with the smallest surface roughness. In short, the AlTiN-based coating material is recommended for the micro end mill in the machining of Ti-6Al-4V.

20.
Micromachines (Basel) ; 9(3)2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30424030

RESUMEN

Hot embossing is an efficient technique for manufacturing high-quality micro-lens arrays. The machining quality is significant for hot embossing the micro-lens array mold. This study investigates the effects of micro ball end-milling on the machining quality of AISI H13 tool steel used in the micro-lens array mold. The micro ball end-milling experiments were performed under different machining strategies, and the surface roughness and scallop height of the machined micro-lens array mold are measured. The experimental results showed that a three-dimensional (3D) offset spiral strategy could achieve a higher machining quality in comparison with other strategies assessed in this study. Moreover, the 3D offset spiral strategy is more appropriate for machining the micro-lens array mold. With an increase of the cutting speed and feed rate, the surface roughness of the micro-lens array mold slightly increases, while a small step-over can greatly reduce the surface roughness. In addition, a hot embossing experiment was undertaken, and the obtained results indicated higher-quality production of the micro-lens array mold by the 3D offset spiral strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA