RESUMEN
Chelating agents have been considered as an important phytoremediation strategy to enhance heavy metal extraction from contaminated soil. A pot experiment was conducted to explore the effects of low molecular weight organic acids (LMWOAs) on the phytoremediation efficiency of copper (Cu) by castor bean, and soil enzyme activities. Results indicated that the addition of all the three kinds of LMWOAs (citric, tartaric, oxalic acids) did not decrease the biomass of castor bean, despite the fact they reduced the concentration of chlorophyll-a in leaves compared to the control. The Cu concentrations in the roots and shoots significantly increased by 6-106% and 5-148%, respectively, in the LMWOAs treatments so that the total accumulation of Cu by whole plants in all the LMWOAs treatments increased by 21-189% in comparison with the control. The values of the translocation factor (TF) and bio-concentration factor (BCF) of Cu in castor bean also rose following the addition of LMWOAs, indicating that the LMWOAs enhanced the uptake and transportation of Cu. Moreover, the application of LMWOAs did not significantly change the soil pH but significantly increased the activity of soil enzymes (urease, catalase, and alkaline phosphatase). The addition of exogenous LMWOAs increased the available Cu significantly in the soil, thus promoted the phytoextraction efficiency of Cu by castor bean. These results will provide some new insights into the practical use of LMWOAs for the phytoremediation of heavy-metal-contaminated soil employing castor bean.
Asunto(s)
Bioacumulación , Quelantes/química , Cobre/metabolismo , Compuestos Orgánicos/química , Ricinus communis/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Ácidos/administración & dosificación , Ácidos/química , Biodegradación Ambiental , Ricinus communis/efectos de los fármacos , Quelantes/administración & dosificación , Peso Molecular , Compuestos Orgánicos/administración & dosificaciónRESUMEN
Fertilization is an important agricultural strategy for enhancing the efficiency of phytoremediation in copper (Cu)-contaminated soils. In this study, the effects of nitrogen (N) forms, including ammonium (NH4+-N) and nitrate (NO3--N), on the growth, translocation, and accumulation of Cu in the tissues of Ricinus communis L. were investigated in pot and hydroponic experiments. The results demonstrated that higher biomass and N contents in plants were obtained when N was supplied as NO3--N rather than NH4+-N. Application of N increased the Cu content in the roots of R. communis, with a higher content after NH4+-N (53.10-64.20 mg kg-1) than NO3--N (37.62-53.75 mg kg-1) treatment. On the contrary, the levels of Cu translocation factors were much higher in NO3--fed plants (0.34-0.45) than in NH4+-fed plants (0.28-0.38). The suggested amount of N for fertilizer application is 225 kg hm-2, which resulted in the highest Cu content in R. communis and optimal plant growth. As the main Cu-binding site, root cell walls accumulated less Cu in plants treated with NH4+-N compared with NO3--N. Additionally, NH4+-N induced a higher malondialdehyde content and more severe root damage compared with NO3--N. In the leaf, a larger number of black granules, which could be protein and starch grains involved in the detoxification of Cu in R. communis, were present after NH4+-N than NO3--N treatment. These results illustrate that N forms are especially important for Cu translocation and accumulation and that immobilization and transformation of Cu in roots were improved more by NH4+-N than NO3--N. In conclusion, N fertilizers containing the appropriate forms applied at suitable rates may enhance the biomass and Cu accumulation of R. communis and thereby the remediation efficiency of Cu-contaminated soils.
Asunto(s)
Cobre/metabolismo , Fertilizantes/análisis , Nitrógeno/metabolismo , Ricinus/metabolismo , Contaminantes del Suelo/metabolismo , Compuestos de Amonio/análisis , Biodegradación Ambiental , Biomasa , Ricinus communis/metabolismo , Nitratos/análisis , Raíces de Plantas/metabolismoRESUMEN
Phosphorous (P) fertilization is an important agronomic practice, but its role in enhancing phytoremediation efficacy and mediating detoxification has rarely been reported in environmental remediation studies. In this study, a pot experiment was undertaken to assess: firstly, the effect of P on phytoextraction of Cu by Ricinus communis L.; secondly, the potential mechanisms by differentiating the effects of the plant from that of P fertilizer (Ca(H2PO4)2); and thirdly, the role of P in physiological detoxification. Results showed that the application of P fertilizer significantly (p ≤ 0.05) increased the plant biomass as well as the Cu concentrations in plant tissues. This enhanced the phytoremediation efficiency represented by the total Cu extraction (up to 121.3 µg Cu plant-1). Phosphorous (P) fertilizer led to a negligible decline in soil pH (0.2 units) but significantly (p ≤ 0.05) reduced the concentrations of soil available in Cu and Fe, due to the formation of insoluble Cu/Fe-phosphate precipitates. Nevertheless, P fertilizer still improved the accumulation and extraction of Cu by R. communis, most likely attributable to the Fe-deficiency induced by applied P fertilizer. Moreover, the application of P fertilizer revealed a significant reduction in MDA, and a profound (p ≤ 0.05) elevation in the amount of photosynthetic pigments, GSH and AsA, along with the enhanced activities of antioxidative enzymes (SOD, POD, and CAT). In this way, Cu toxicity was alleviated. P fertilizers not only enhance the phytoremediation efficiency of Cu-contaminated soils by R. communis, but they also facilitate detoxification, which improves our understanding of the role of P in phytoremediation technologies.
Asunto(s)
Biodegradación Ambiental , Cobre/metabolismo , Fertilizantes , Fósforo/farmacología , Ricinus/efectos de los fármacos , Antioxidantes/análisis , Antioxidantes/farmacología , Biomasa , Cobre/farmacocinética , Restauración y Remediación Ambiental/métodos , Inactivación Metabólica , Fotosíntesis , Ricinus/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinéticaRESUMEN
The root soil interaction affects metal bioavailability in the rhizosphere, thus impacting the uptake and accumulation of metals by plants. In this study, a greenhouse experiment using a root-bag technique for castor bean plants was conducted to determine the i) rhizosphere effect on the fractions of Cu, and ii) the characteristics of dissolved organic matter (DOM) in the rhizosphere soil. Results showed that the Cu concentration in the leaves, stems, and roots was 15.41, 6.71, and 47.85 mg kg-1, respectively, in the control and reached up to 96.5, 254.9, and 3204 mg kg-1 in Cu400 treatment, respectively. After cultivating castor bean plants, the concentration of acid exchangeable Cu in rhizosphere soil was higher than that in the bulk soil for the same Cu addition, whereas the concentrations of reducible Cu, oxidizable Cu, and residual Cu in the rhizosphere soil were all lower than those in the bulk soil, respectively. In comparison to the bulk soil, the pH decreased while the total nitrogen and total carbon concentrations both increased in the rhizosphere soil. Moreover, the concentrations of total low molecular weight organic acids (LMWOAs) and total amino acids in the rhizosphere soil of the Cu treatments increased by between 15.18% to 47.17% and 36.35%-200%, respectively with respect to the control. The less complex DOM with a high LMWOAs concentration in the rhizosphere soil shifted the soil Cu from a relative stable fraction to available fractions.