RESUMEN
BACKGROUND: Experimental verification of a drug discovery process is expensive and time-consuming. Therefore, recently, the demand to more efficiently and effectively identify drug-target interactions (DTIs) has intensified. RESULTS: We treat the prediction of DTIs as a ranking problem and propose a neural network architecture, NeuRank, to address it. Also, we assume that similar drug compounds are likely to interact with similar target proteins. Thus, in our model, we add drug and target similarities, which are very effective at improving the prediction of DTIs. Then, we develop NeuRank from a point-wise to a pair-wise, and further to list-wise model. CONCLUSION: Finally, results from extensive experiments on five public data sets (DrugBank, Enzymes, Ion Channels, G-Protein-Coupled Receptors, and Nuclear Receptors) show that, in identifying DTIs, our models achieve better performance than other state-of-the-art methods.
Asunto(s)
Desarrollo de Medicamentos , Preparaciones Farmacéuticas , Descubrimiento de Drogas , Redes Neurales de la Computación , Receptores Citoplasmáticos y NuclearesRESUMEN
With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.