Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(1): 110770, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128704

RESUMEN

Systemic Lupus Erythematosus (SLE) is an autoimmune sickness with unclear pathogenesis. The goal of this research was to reveal the heterogeneity of immune cells in SLE patients of Han and Zang nationality by single-cell RNA sequencing (scRNA-seq) and bioinformatics profiling. METHODS: A total of 94,102 peripheral blood mononuclear cells (PBMCs) from six volunteers with SLE (3 Zang, 3 Han) and six healthy controls were first conducted through scRNA-seq analysis. The immune cell subsets in the pathogenesis of SLE were analyzed as well. Real-time quantitative PCR (RT-qPCR) was applied to confirm the results of sc-RNA seq analysis. RESULTS: For the Tibetan samples, the ratios of Naïve CD4 RPS4Y1 cells, Naïve CD4 cells, Memory BC CD24 and Memory BC differed significantly between the SLE and control samples, while that of CD8 CTL MAL cells was significantly different between the two groups in Han nationality samples. Variable differentiation states of CD8 CTL MAL cells, CD8 CTL GZMK cells, and Naïve CD4 cells were detected through pseudotime analysis. Moreover, T-cell receptor (TCR) abundance was notably higher in Tibetan SLE specimens than that in controls, while B-cell receptor (BCR) abundance in Tibetan and Han samples was higher than in control groups. CONCLUSIONS: In summary, the immune cellular heterogeneity of SLE patients both Han and Zang nationality was explored based on various bioinformatics approaches, providing new perspectives for immunological characteristics of SLE among different ethnic groups.


Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Humanos , Diferenciación Celular , Etnicidad , Lupus Eritematoso Sistémico/genética , Análisis de Secuencia de ARN
2.
Lupus ; 33(4): 365-374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320572

RESUMEN

BACKGROUND: Systemic lupus erythematosus is an immunologically dysregulated disease characterized by the presence of multiple autoantibodies. In SLE, B lymphocytes contribute to the dysregulated production of autoantibodies and cytokines. Recently, we discovered that miR-99a-3p binds to both EIF4EBP1 and NCAPG mRNA and that lowering miR-99a-3p can promote B cell autophagy in SLE by increasing EIF4EBP1 expression. However, the functions of miR-99a-3p and NCAPG in SLE have not been extensively investigated. OBJECTIVE: This work aims to evaluate the levels of miR-99a-3p and NCAPG expression in SLE B cells and to determine whether the aberrant expression of miR-99a-3p and NCAPG contributes to the pathological mechanisms in SLE. METHODS: B lymphocytes were obtained through immunomagnetic negative selection. Using RT-qPCR, miR-99a-3p and NCAPG mRNA expressions in B lymphocytes and in the BALL-1 cell line were measured. To determine the relative abundance of NCAPG, PI3K, p-PI3K, AKT, and p-AKT, we normalize them to the level of ß-actin using Western blotting. Evaluation of miR-99a-3p and NCAPG's impact on cell proliferation was done utilizing CCK-8 assay. Using flow cytometry, the cell cycle and apoptosis were both measured. RESULTS: Comparing SLE B cells to healthy controls, miR-99a-3p expression was significantly downregulated. Additionally, it was observed that SLE B cells had significantly higher NCAPG mRNA expression. Blocking miR-99a-3p expression in BALL-1 cells with an antagomir elevated NCAPG expression, facilitated PI3K/AKT pathway activation, improved cell proliferation, raised the fraction of S-phase cells, and prevented cell apoptosis. The opposite effects of upregulated miR-99a-3p levels on BALL-1 cells were observed by using an agomir. Furthermore, the effect of decreased miR-99a-3p expression on cell proliferation was partially mediated by elevating NCAPG levels and activating the PI3K/AKT pathway. CONCLUSION: Our research indicates that lower miR-99a-3p expression in SLE B cells appears to boost B cell number via the NCAPG and PI3K/AKT pathways.


Asunto(s)
Lupus Eritematoso Sistémico , MicroARNs , Humanos , Autoanticuerpos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero , Transducción de Señal
3.
Chem Soc Rev ; 52(3): 1157, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688337

RESUMEN

Correction for 'Main group metal polymerisation catalysts' by Eszter Fazekas et al., Chem. Soc. Rev., 2022, 51, 8793-8814, https://doi.org/10.1039/D2CS00048B.

4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673960

RESUMEN

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Perilla frutescens , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación hacia Abajo/genética , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/biosíntesis , Perilla frutescens/genética , Perilla frutescens/metabolismo , Filogenia , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
5.
J Biol Chem ; 298(8): 102160, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724961

RESUMEN

C-reactive protein (CRP) is a major acute phase protein and inflammatory marker, the expression of which is largely liver specific and highly inducible. Enhancers are regulatory elements critical for the precise activation of gene expression, yet the contributions of enhancers to the expression pattern of CRP have not been well defined. Here, we identify a constitutively active enhancer (E1) located 37.7 kb upstream of the promoter of human CRP in hepatocytes. By using chromatin immunoprecipitation, luciferase reporter assay, in situ genetic manipulation, CRISPRi, and CRISPRa, we show that E1 is enriched in binding sites for transcription factors STAT3 and C/EBP-ß and is essential for the full induction of human CRP during the acute phase. Moreover, we demonstrate that E1 orchestrates with the promoter of CRP to determine its varied expression across tissues and species through surveying activities of E1-promoter hybrids and the associated epigenetic modifications. These results thus suggest an intriguing mode of molecular evolution wherein expression-changing mutations in distal regulatory elements initiate subsequent functional selection involving coupling among distal/proximal regulatory mutations and activity-changing coding mutations.


Asunto(s)
Proteína C-Reactiva , Elementos de Facilitación Genéticos , Sitios de Unión , Proteína C-Reactiva/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica , Hepatocitos , Humanos , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/metabolismo , Transcripción Genética
6.
J Am Chem Soc ; 145(41): 22745-22752, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37800981

RESUMEN

Asymmetric olefin metathesis is a powerful strategy for stereocontrolled synthesis that allows the formation of chiral elements in conjunction with carbon-carbon double bonds. Here, we report a new series of cyclometalated stereogenic-at-Ru catalysts that enable highly efficient asymmetric ring opening/cross-metathesis (AROCM) and asymmetric ring-closing metathesis (ARCM) reactions. Single enantiomers of these catalysts with either right-handed or left-handed configurations at the Ru center can be easily accessed via highly stereoselective C-H bond activation-based cyclometalation. Right-handed chiral Ru catalysts enabled the Z- and enantioselective AROCM of a wide range of norbornenes and terminal alkenes, generating densely functionalized cyclopentanes with excellent stereo- and enantioselectivities (99:1 Z/E, up to 99% ee). Left-handed chiral Ru catalysts enabled the facile ARCM of sterically unhindered, all-terminal prochiral trienes, which had not been achieved by previous Ru catalysts, providing simple cyclic ethers and amides with tertiary or quaternary carbon stereocenters with excellent enantioselectivities (up to 99% ee).

7.
Bioconjug Chem ; 34(2): 443-452, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36748916

RESUMEN

Chimeric antigen receptors (CARs) recognizing tumor-associated antigens (TAAs) effectively target tumor cells without using the major histocompatibility complex (MHC). However, CARs have inaccurate dose determination in clinical practice, and the methods that can solve this problem often produce cytotoxic substances, such as green fluorescent protein (GFP) insertion. Therefore, in this study, we tried to anchor harmless fluorescent labels on CAR-T cell membranes using highly biologically compatible strain-promoted alkyne-azide cycloaddition (SPAAC) without any byproducts. Our conjugated fluorescent label was stable on the CAR-T cell surface for at least two weeks, with excellent light stability and metrology. Also, this method enabled the rapid quantification of the living CAR-T cells without affecting their activity. Thus, this method is a promising reliable strategy for accurately diagnosing and treating cancer.


Asunto(s)
Neoplasias , Humanos , Reacción de Cicloadición , Antígenos de Neoplasias , Linfocitos T
8.
Crit Rev Food Sci Nutr ; 63(20): 4541-4553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34793267

RESUMEN

Anthocyanins are important pigments that contribute to fruit quality. The regulation of anthocyanin biosynthesis by several transcription factors via sophisticated regulatory networks has been studied in various plants. Brassinosteroids (BRs), a new class of plant hormone, are involved in regulating anthocyanin biosynthesis in fruits. Furthermore, light directly affects the synthesis and distribution of anthocyanins. Here, we summarize the recent progress toward understanding the impact of BR and light on anthocyanin biosynthesis in climacteric and non-climacteric fruits. We review the BR and light signaling pathways and highlight the important transcription factors that are associated with the synthesis of anthocyanins, such as BZR1 (brassinazole-resistant 1, BR signaling pathway), HY5 (elongated hypocotyl 5) and COP1 (constitutively photomorphogenic 1, light signal transduction pathway), which bind with the target genes involved in anthocyanin synthesis. In addition, we review the mechanism by which light signals interact with hormonal signals to regulate anthocyanin biosynthesis.


Asunto(s)
Antocianinas , Frutas , Antocianinas/metabolismo , Frutas/metabolismo , Brasinoesteroides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luz
9.
Cell Biol Toxicol ; 39(5): 2381-2399, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35648318

RESUMEN

BACKGROUND: The mutation of BRAF V600E often occurred in melanoma and results in tumorigenesis. BRAF mutation drives hyperactivation of the RAF-MAPK-ERK pathway. The acquired drug resistance upon prolonged use of BRAF inhibitors (such as vemurafenib) still remains the main obstacle. Previously, we have found that E3 ligase Skp2 over-expresses vemurafenib-resistant melanoma cells, and knockdown of Skp2 enhances the anti-tumor effect of vemurafenib. Interestingly, the literature has reported that the selective USP14/UCHL5 inhibitor b-AP15 displays great potential in melanoma therapy; however, the molecular mechanism still remains unknown. METHODS: In vitro, the effect of the combination regimen of vemurafenib (Vem, PLX4032) and b-AP15 on vem-sensitive and vem-resistant melanoma has been investigated by wound healing, colony formation, transwell invasion assay, flow cytometry, lysosome staining, and ROS detection. In vivo, the combination effect on vem-resistant melanoma has been evaluated with a nude mice xenograft tumor model. GST-pulldown and co-immunoprecipitation (co-IP) assays have been applied to investigate the interactions between USP14, UCHL5, and Skp2. Cycloheximide (CHX) assay and ubiquitination assays have been used to explore the effect of USP14 on Skp2 protein half-life and ubiquitination status. RESULTS: In the present study, we have revealed that repression of USP14 sensitizes vemurafenib resistance in melanoma through a previously unappreciated mechanism that USP14 but not UCHL5 stabilizes Skp2, blocking its ubiquitination. K119 on Skp2 is required for USP14-mediated deubiquitination and stabilization of Skp2. Furthermore, the mutated catalytic activity amino acid cysteine (C) 114 on USP14 abrogates stabilization of Skp2. Stabilization of Skp2 is required for USP14 to negatively regulate autophagy. The combination regimen of Skp2 inhibitor vemurafenib and USP14/UCHL5 inhibitor b-AP15 dramatically inhibits cell viability, migration, invasion, and colony formation in vemurafenib-sensitive and vemurafenib-resistant melanoma. Vemurafenib and b-AP15 hold cells in the S phase thus leading to apoptosis as well as the formation of the autophagic vacuole in vemurafenib-resistant SKMEL28 cells. The enhanced proliferation effect of USP14 and Skp2 is mainly due to a more effective reduction of cell apoptosis and autophagy. Further evaluation of various protein alterations has revealed that the increased expression of cleaved-PARP, LC3, and decreased Ki67 are more obvious in the combination of vemurafenib and b-AP15 treatment than those in single-drug treatment. Moreover, the co-treatment of vemurafenib and b-AP15 dramatically inhibits the growth of vemurafenib-resistant melanoma xenograft in vivo. Collectively, our findings have demonstrated that the combination of Skp2 inhibitor and USP14 inhibitor provides a new solution for the treatment of BRAF inhibitor resistance melanoma.


Asunto(s)
Melanoma , Proteínas Quinasas Asociadas a Fase-S , Animales , Ratones , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Ratones Desnudos , Indoles/farmacología , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Melanoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/farmacología , Ubiquitina Tiolesterasa/uso terapéutico
10.
BMC Nephrol ; 24(1): 50, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894904

RESUMEN

BACKGROUND: Early diagnosis and typing are crucial for improving the prognosis of patients with renal amyloidosis. Currently, Untargeted proteomics based precise diagnosis and typing of amyloid deposits are crucial for guiding patient management. Although untargeted proteomics achieve ultra-high-throughput by selecting the most abundant eluting cationic peptide precursors in series for tandem MS events, it lacks in sensitivity and reproducibility, which may not be suitable for early-stage renal amyloidosis with minor damages. Here, we aimed to develop parallel reaction monitoring (PRM)-based targeted proteomics to achieve high sensitivity and specificity by determining absolute abundances and codetecting all transitions of highly repeatable peptides of preselected amyloid signature and typing proteins in identifying early-stage renal immunoglobulin-derived amyloidosis. METHODS AND RESULTS: In 10 discovery cohort cases, Congo red-stained FFPE slices were micro-dissected and analyzed by data-dependent acquisition-based untargeted proteomics for preselection of typing specific proteins and peptides. Further, a list of proteolytic peptides from amyloidogenic proteins and internal standard proteins were quantified by PRM-based targeted proteomics to validate performance for diagnosis and typing in 26 validation cohort cases. The diagnosis and typing effectiveness of PRM-based targeted proteomics in 10 early-stage renal amyloid cases was assessed via a comparison with untargeted proteomics. A peptide panel of amyloid signature proteins, immunoglobulin light chain and heave chain in PRM-based targeted proteomics showed significantly distinguishing ability and amyloid typing performance in patients. The diagnostic algorithm of targeted proteomics with a low amount of amyloid deposits in early-stage renal immunoglobulin-derived amyloidosis showed better performance than untargeted proteomics in amyloidosis typing. CONCLUSIONS: This study demonstrates that the utility of these prioritized peptides in PRM-based targeted proteomics ensure high sensitivity and reliability for identifying early-stage renal amyloidosis. Owing to the development and clinical application of this method, rapid acceleration of the early diagnosis, and typing of renal amyloidosis is expected.


Asunto(s)
Amiloidosis , Proteómica , Humanos , Reproducibilidad de los Resultados , Proteómica/métodos , Placa Amiloide , Espectrometría de Masas/métodos , Amiloidosis/diagnóstico , Amiloidosis/metabolismo , Amiloide , Cadenas Ligeras de Inmunoglobulina
11.
Mar Drugs ; 21(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36976194

RESUMEN

Arthrospira maxima has been identified as a sustainable source of rich proteins with diverse functionalities and bioactivities. After extracting C-phycocyanin (C-PC) and lipids in a biorefinery process, the spent biomass still contains a large proportion of proteins with potential for biopeptide production. In this study, the residue was digested using Papain, Alcalase, Trypsin, Protamex 1.6, and Alcalase 2.4 L at different time intervals. The resulting hydrolyzed product with the highest antioxidative activity, evaluated through their scavenging capability of hydroxyl radicals, superoxide anion, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), was selected for further fractionation and purification to isolate and identify biopeptides. Alcalase 2.4 L was found to produce the highest antioxidative hydrolysate product after four-hour hydrolysis. Fractionating this bioactive product using ultrafiltration obtained two fractions with different molecular weights (MW) and antioxidative activity. The low-molecular-weight fraction (LMWF) with MW <3 kDa had higher DPPH scavenging activity with the IC50 value of 2.97 ± 0.33 compared to 3.76 ± 0.15 mg/mL of the high-molecular-weight fraction (HMWF) with MW >3 kDa. Two stronger antioxidative fractions (F-A and F-B) with the respective significant lower IC50 values of 0.83 ± 0.22 and 1.52 ± 0.29 mg/mL were isolated from the LMWF using gel filtration with a Sephadex G-25 column. Based on LC-MS/MS analysis of the F-A, 230 peptides derived from 108 A. maxima proteins were determined. Notably, different antioxidative peptides possessing various bioactivities, including antioxidation, were detected with high predicted scores together with in silico analyses on their stability and toxicity. This study established knowledge and technology to further value-add to the spent A. maxima biomass by optimizing hydrolysis and fraction processes to produce antioxidative peptides with Alcalase 2.4 L after two products already produced in a biorefinery. These bioactive peptides have potential applications in food and nutraceutical products.


Asunto(s)
Antioxidantes , Spirulina , Antioxidantes/química , Ficocianina , Spirulina/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/química , Hidrólisis , Subtilisinas/química , Lípidos , Hidrolisados de Proteína/química
12.
Chem Soc Rev ; 51(21): 8793-8814, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36214205

RESUMEN

With sustainability at the forefront of current polymerisation research, the typically earth-abundant, inexpensive and low-toxicity main group metals are attractive candidates for catalysis. Main group metals have been exploited in a broad range of polymerisations, ranging from classical alkene polymerisation to the synthesis of new bio-derived and degradable polyesters and polycarbonates via ring-opening polymerisation and ring-opening copolymerisation. This tutorial review highlights efficient polymerisation catalysts based on Group 1, Group 2, Zn and Group 13 metals. Key mechanistic pathways and catalyst developments are discussed, including tailored ligand design, heterometallic cooperativity, bicomponent systems and careful selection of the polymerisation conditions, all of which can be used to fine-tune the metal Lewis acidity and the metal-alkyl bond polarity.


Asunto(s)
Metales , Poliésteres , Catálisis , Polimerizacion , Metales/química , Poliésteres/química , Alquenos/química
13.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894786

RESUMEN

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.


Asunto(s)
Perilla frutescens , Perilla frutescens/genética , Perilla frutescens/metabolismo , Glicerol/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Aceites de Plantas/metabolismo , Fosfatos/metabolismo
14.
J Urol ; 207(1): 144-151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34428923

RESUMEN

PURPOSE: Urinary stone disease (USD) has been associated with an increased risk of chronic kidney disease (CKD) and end-stage renal disease in Western populations. However, the metabolic disorders associated with unilateral and bilateral renal stones and the association of these types of stones with CKD and kidney tubular injury markers, such as urine N-acetyl-ß-D-glucosaminidase (NAG) and alpha-1-microglobulin (α1-MG), have not been fully examined. MATERIALS AND METHODS: We performed a cross-sectional study of 10,281 participants in rural China in 2014. All the subjects underwent renal ultrasound to detect USD; stone formers were divided into groups with unilateral or bilateral renal stones by ultrasound examinations. CKD was defined as a decreased estimated glomerular filtration rate (eGFR, <60 mL/minute/1.73 m2) and/or albuminuria (albumin-to-creatinine ratio ≥30 mg/gm). Increased urine NAG and α1-MG levels were defined as their values above the 75th percentile of the sample distribution. RESULTS: Among all the participants, 4.9% (507) had unilateral renal stones, and 0.7% (75) had bilateral renal stones. The proportion of CKD in the nonstone, unilateral and bilateral renal stone formers was 11.0%, 19.2% and 29.7%, respectively (p for trend <0.001). Individuals with bilateral renal stones had the highest proportion of metabolic components, such as elevated blood pressure and serum glucose. In multivariate analyses after adjustment for multiple confounders, bilateral renal stones were significantly associated with an increased risk of decreased eGFR (OR 3.38; 95% CI 1.05-10.90), albuminuria (OR 3.01; 95% CI 1.76-5.13), CKD (OR 3.18; 95% CI 1.88-5.36), increased urine NAG-to-creatinine ratio (OR 1.95; 95% CI 1.21-3.16) and α1-MG-to-creatinine ratio levels (OR 2.54; 95% CI 1.56-4.12) compared with the lack of stones. CONCLUSIONS: Bilateral renal stones were associated with a higher risk of CKD and higher levels of kidney tubular injury markers. Clinicians should pay attention to metabolic disorders in bilateral renal stone formers.


Asunto(s)
Cálculos Renales/complicaciones , Cálculos Renales/metabolismo , Insuficiencia Renal Crónica/etiología , Anciano , Biomarcadores/orina , Estudios Transversales , Femenino , Humanos , Cálculos Renales/patología , Cálculos Renales/orina , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/orina
15.
Arch Orthop Trauma Surg ; 142(2): 247-253, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33219844

RESUMEN

OBJECTIVE: To investigate the preoperative morbidity of deep venous thrombosis (DVT) and predictive risk factors associated with DVT after closed tibial shaft fracture. METHODS: Ultrasonography and blood analyses were performed preoperatively in patients who sustained tibial shaft fracture between October 2014 and December 2018. Univariate analyses were used in the data of demographics, comorbidities, mechanism of injury, concomitant fractures and laboratory biomarkers. Multivariate logistic regression analyses were conducted to determine the independent risk factors associated with DVT. RESULTS: In total, 918 patients with an operatively treated tibial shaft fracture were included, among whom 122 patients had preoperative DVTs, indicating a crude morbidity of 13.3%. Ninety-two of 758 (12.1%) patients with isolated tibial shaft fracture developed DVT, while 30 of 160 (18.8%) patients with concurrent fracture presented with DVT. The average interval between fracture and initial diagnosis of DVT was 3.1 days (median, 2 days), ranging from 0 to 33 days. Among DVT-positive patients, 16 (13.1%) patients presented with proximal DVT and 106 (86.9%) patients had distal DVT. Multivariate logistic regression analysis showed four independent risk factors were significantly correlated to the development of DVT, including increased age (OR = 1.17, p = 0.003), diabetes (OR = 1.99, p = 0.009), serum hydroxybutyrate dehydrogenase > 182 U/L (OR = 1.83, p = 0.008), and delay to DUS (in each day) (OR = 1.13, p < 0.001). CONCLUSION: In the present cohort study, the incidence of DVT was 12.1% in patients with isolated tibial shaft fracture. We suggest individualized risk stratification and early anticoagulation for patients with high risk factors including pre-existing diabetes, HBDH > 182 U/L, delay to DUS and older age. LEVEL OF EVIDENCE: Level III, a prospective cohort study.


Asunto(s)
Fracturas de la Tibia , Trombosis de la Vena , Anciano , Estudios de Cohortes , Humanos , Incidencia , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Fracturas de la Tibia/complicaciones , Fracturas de la Tibia/cirugía , Trombosis de la Vena/epidemiología , Trombosis de la Vena/etiología
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(12): 1629-1636, 2022 Dec 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-36748372

RESUMEN

OBJECTIVES: Fluorouracil chemotherapeutic drugs are the classic treatment drugs of gastric cancer. But the problem of drug resistance severely limits their clinical application. This study aims to investigate whether hypoxia microenvironment affects gastric cancer resistance to 5-fluorouracil (5-FU) and discuss the changes of gene and proteins directly related to drug resistance under hypoxia condition. METHODS: Gastric cancer cells were treated with 5-FU in hypoxia/normoxic environment, and were divided into a Normoxic+5-FU group and a Hypoxia+5-FU group. The apoptosis assay was conducted by flow cytometry Annexin V/PI double staining. The real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect the expression level of hypoxia inducible factor-1α (HIF-1α), multidrug resistance (MDR1) gene, P-glycoprotein (P-gp), and vascular endothelial growth factor (VEGF) which were related to 5-FU drug-resistance. We analyzed the effect of hypoxia on the treatment of gastric cancer with 5-FU. RESULTS: Compared with the Normoxic+5-FU group, the apoptosis of gastric cancer cells treated with 5-FU in the Hypoxia+5-FU group was significantly reduced (P<0.05), and the expression of apoptosis promoter protein caspase 8 was also decreased. Compared with the the Normoxic+5-FU group, HIF-1α mRNA expression in the Hypoxia+5-FU group was significantly increased (P<0.05), and the mRNA and protein expression levels of MDR1, P-gp and VEGF were also significantly increased (all P<0.05). The increased expression of MDR1, P-gp and VEGF had the same trend with the expression of HIF-1α. CONCLUSIONS: Hypoxia is a direct influencing factor in gastric cancer resistance to 5-FU chemotherapy. Improvement of the local hypoxia microenvironment of gastric cancer may be a new idea for overcoming the resistance to 5-FU in gastric cancer.


Asunto(s)
Fluorouracilo , Neoplasias Gástricas , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Resistencia a Múltiples Medicamentos , Factores de Crecimiento Endotelial Vascular/metabolismo , Hipoxia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Línea Celular Tumoral , Hipoxia de la Célula , ARN Mensajero/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Microambiente Tumoral
17.
Angew Chem Int Ed Engl ; 61(3): e202112993, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34626073

RESUMEN

The mechanistic uniqueness and versatility of borrowing hydrogen catalysis provides an opportunity to investigate the controllability of a cascade reaction, and more importantly, to realize either one or both of chiral recognition and chiral induction simultaneously. Here we report that, in a borrowing hydrogen cascade starting from racemic allylic alcohols, one of the enantiomers could be kinetically resolved, while the other enantiomer could be purposely converted to various targeted products, including α,ß-unsaturated ketones, ß-functionalized ketones and γ-functionalized alcohols. By employing a robust Ru-catalyst, both kinetic resolution and asymmetric induction were achieved with remarkable levels of efficiency and enantioselectivity. Density functional theory (DFT) calculations suggest that corresponding catalyst-substrate π-π interactions are pivotal to realize the observed stereochemical diversity.

18.
Langmuir ; 37(44): 12802-12811, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34698494

RESUMEN

Cu0.27Co2.73O4 nanooctahedrons enclosed by polar {111} planes have been prepared through the selective adsorption of Cl-. Hydrogenation has been successfully used to enhance the responses of the Cu0.27Co2.73O4 nanooctahedron sensors to acetone, ethanol, and n-butylamine. The enhancement of the response results from the increase in the number of 3-coordinated Co/Cu atoms (Co3c/Cu3c) at the (111) plane of Cu0.27Co2.73O4 through removing O-H groups and Cl- ions at the surface by hydrogenation. The Co3c/Cu3c atoms on the (111) plane of Cu0.27Co2.73O4 are considered to function as the gas response active centers. These Co3c/Cu3c active atoms have three functions: generating electrons, adsorbing oxygen from air, and catalyzing the sensing reactions. The hydrogenation polar surface approach can be applied to improve the performances of other sensing materials. Such sensing mechanisms of the Co3c/Cu3c unsaturated atoms as the active centers can be conducive to understanding the gas-sensing essence and the development of sensing materials with high performances.

19.
Kidney Blood Press Res ; 46(3): 286-297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33866316

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is characterized by the mesangial deposition of pathogenic IgA. We previously detected the deposition of pathogenic secretory IgA (SIgA) in the mesangium of about one-third of IgAN patients. Tubulointerstitial injury has an important role in the development of IgAN. However, the relationship between SIgA and tubulointerstitial damage is currently unclear. In this work, the role of the mesangial-tubular crosstalk was explored in the tubulointerstitial damage in SIgA-induced IgAN. METHODS: SIgA deposition in renal tissues of IgAN patients was detected by immunofluorescence. Flow cytometry was used to assess the binding of SIgA to human renal mesangial cells (HRMC) and human proximal tubule epithelial (HK-2) cells. HK-2 was co-cultured with HRMC added with SIgA isolated from patients or normal volunteers. Protein synthesis and gene expressions of TNF-α, TGF-ß1, and MCP-1 were determined by ELISA and PCR, respectively. The expressions of the above cytokines in renal tissues of patients and normal controls were detected by immunohistochemistry. RESULTS: Twenty-nine of 96 patients had SIgA deposition in the mesangium, but SIgA was rarely detected in the tubulointerstitium. The binding rate of SIgA to HK-2 (2.79%) was significantly lower than that of HRMC (81.6%) (p < 0.001). The expressions of TNF-α, TGF-ß1, and MCP-1 in HRMC were significantly higher than in SIgA-stimulated HK-2 (p < 0.05), and their expressions were significantly higher in the SIgA-stimulated co-culture group compared with SIgA-stimulated HRMC (p < 0.05). The expressions of the above cytokines were mainly detected in tubulointerstitium of IgAN patients with positive and negative SIgA deposition, without significant difference between the 2 groups, but to a significantly higher level than that in normal controls, and their expressions positively correlated with tubulointerstitial injury. CONCLUSION: Inflammatory factors released from the mesangium after SIgA deposition might mediate tubulointerstitial damage via mesangial-tubular crosstalk in IgAN.


Asunto(s)
Glomerulonefritis por IGA/patología , Inmunoglobulina A Secretora/análisis , Túbulos Renales Proximales/patología , Células Mesangiales/patología , Adulto , Línea Celular , Técnicas de Cocultivo , Femenino , Humanos , Inflamación/patología , Masculino , Factor de Crecimiento Transformador beta1/análisis , Factor de Necrosis Tumoral alfa/análisis , Adulto Joven
20.
Int J Med Sci ; 18(2): 378-386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390807

RESUMEN

Chromosome 9 open reading frame 72 (C9ORF72) encodes a 54-kDa protein with unknown function that is expressed at high levels in the central nervous system. The C9ORF72 hexanucleotide amplification is one of the most recently discovered repetitive amplification diseases related to neurodegeneration. Its association with amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) spectrum diseases has been fully established, although a causative role for C9ORF72 in Alzheimer's disease (AD) and Parkinson's disease (PD) remains to be established. Therefore, in this article, we will review the evidence for C9ORF72 as a causative factor in neurodegenerative diseases, the underlying mechanisms, and the potential for targeting C9ORF72 as a strategy to alleviate neurodegenerative disease progression.


Asunto(s)
Proteína C9orf72/genética , Enfermedades Neurodegenerativas/genética , Animales , Proteína C9orf72/antagonistas & inhibidores , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA