Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(10): 5026-5039, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38420691

RESUMEN

Metal-organic frameworks (MOFs) are a type of multifunctional material with organic-inorganic doped metal complexes that have a lot of unsaturated metal sites and a consistent network structure. MOFs work has great performance for enhancing the mass transfer, signal, and sensitivity as well as analyte enrichment. This study highlights the recent advancements of MOFs-based sensors for pollutant detection in a water environment and summarizes the effect of various synthetic materials on the performance of MOFs-based sensors. The related challenges and optimization techniques have been discussed. Then the research results of various MOFs sensors in the detection of wastewater pollutants are analyzed. Finally, the challenges facing MOFs-based water sensor development and the outlook for future research are discussed.

2.
Environ Res ; 249: 118382, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331160

RESUMEN

Constructed wetlands (CWs) are a pollutant treatment design inspired by natural wetlands and are widely utilized for the removal of common pollutants. The research focus lies in the circulation of manganese (Mn) in the environment to enhance pollutant removal within CWs. This paper provides a comprehensive review of recent advancements in understanding the role and effects of Mn in chemical weapons, based on literature retrieval from 2002 to 2021. Ecological risk assessment and heavy metals within CWs emerge as current areas of research interest. Mn sources within CWs primarily include natural deposition, heavy metal wastewater, and intentional addition. The cycling between Mn(II) and Mn(IV) facilitates enhanced wastewater treatment within CWs. Moreover, employing a Mn matrix proves effective in reducing ammonia nitrogen wastewater, organic pollutants, as well as heavy metals such as Cd and Pb, thereby addressing complex pollution challenges practically. To comprehensively analyze influencing factors on the system's performance, both internal factors (biological species, design parameters, pH levels, etc.) and external factors (seasonal climate variations, precipitation patterns, ultraviolet radiation exposure, etc.) were discussed. Among these factors, microorganisms, pollutants, and temperature are the most important influencing factors, which emphasizes the importance of these factors for wetland operation. Lastly, this paper delves into plant absorption of Mn along with coping strategies employed by plants when faced with Mn poisoning or deficiency scenarios. When utilizing Mn for the regulation of constructed wetlands, it is crucial to consider the tolerance levels of associated plant species. Furthermore, the study predicts future research hotspots encompass high-efficiency catalysis techniques, matrix-filling approaches, and preparation of resource utilization methods involving Mn nanomaterials.


Asunto(s)
Manganeso , Plantas , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Humedales , Manganeso/análisis , Contaminantes Químicos del Agua/análisis , Plantas/metabolismo , Plantas/química , Eliminación de Residuos Líquidos/métodos , Bibliometría , Aguas Residuales/química
3.
Environ Res ; 251(Pt 1): 118389, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460661

RESUMEN

Phytoremediation has emerged as a common technique for remediating Cd pollution in farmland soil. Moreover, phosphorus, an essential element for plants, can alter the pectin content of plant cell walls and facilitate the accumulation of Cd in plant tissues, thereby enhancing phytoremediation efficiency. Therefore, pot experiments were conducted in order to investigate the effect of phosphorus levels on Cd extraction, phosphorus transformation and phosphorus-related genes during phytoremediation. The results revealed that an optimal application of suitable phosphate fertilizers elevated the soil's pH and electrical conductivity (EC), facilitated the conversion of soil from insoluble phosphorus into available forms, augmented the release of pertinent enzyme activity, and induced the expression of phosphorus cycling-related genes. These enhancements in soil conditions significantly promoted the growth of ryegrass. When applying phosphorus at a rate of 600 mg/kg, ryegrass exhibited plant height, dry weight, and chlorophyll relative content that were 1.27, 1.26, and 1.18 times higher than those in the control group (P0), while the Cd content was 1.12 times greater than that of P0. The potentially toxic elements decline ratio and bioconcentration factor were 42.86% and 1.17 times higher than those of P0, respectively. Consequently, ryegrass demonstrated the highest Cd removal efficiency under these conditions. Results from redundancy analysis (RDA) revealed a significant correlation among pH, total phosphorus, heavy metal content, phosphorus forms, soil enzyme activity, and phosphorus-related genes. In conclusion, this study suggests applying an optimal amount of suitable phosphate fertilizers can enhance restoration efficiency, leading to a reduction in soil Cd content and ultimately improving the safety of crop production in farmlands.


Asunto(s)
Biodegradación Ambiental , Cadmio , Lolium , Fósforo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Cadmio/metabolismo , Fósforo/metabolismo , Fósforo/análisis , Lolium/metabolismo , Lolium/genética , Lolium/crecimiento & desarrollo , Fertilizantes/análisis , Suelo/química
4.
J Environ Manage ; 361: 121289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820797

RESUMEN

In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.


Asunto(s)
Cobre , Nanoestructuras , Plantas , Contaminantes del Suelo , Suelo , Nanoestructuras/toxicidad , Cobre/toxicidad , Cobre/química , Plantas/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/toxicidad , Ecosistema , Microbiología del Suelo , Agricultura
5.
J Environ Sci (China) ; 137: 237-244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37980011

RESUMEN

Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.


Asunto(s)
Arsénico , Pseudomonas putida , Arseniatos , Arsénico/análisis , Pseudomonas putida/genética , Biodegradación Ambiental , Suelo
6.
Planta ; 257(2): 35, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36624317

RESUMEN

MAIN CONCLUSION: This review proposed that phytoremediation could be applied for the decontamination of MPs/NPs. Micro- and nano-plastics (MPs < 5 mm; NPs < 100 nm) are emerging contaminants. Much of the recent concerns have focused on the investigation of their pollution and their potential eco-toxicity. Yet little review was available on the decontamination of MPs/NPs. Recently, the uptake of MPs/NPs by plants has been confirmed. Here, in view of the current knowledge, this review introduces MPs/NPs pollution and highlights the updated information about the interaction between MPs/NPs and plants. This review proposed that phytoremediation could be a potential possible way for the in situ remediation of MPs/NPs-contaminated environment. The possible mechanisms, influencing factors, and existing problems are summarized, and further research needs are proposed. This review herein provides new insights into the development of plant-based process for emerging pollutants decontamination, as well as the alleviation of MPs/NPs-induced toxicity to the ecosystem.


Asunto(s)
Contaminantes Ambientales , Microplásticos , Biodegradación Ambiental , Ecosistema , Transporte Biológico
7.
Environ Sci Technol ; 57(9): 3733-3745, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36821792

RESUMEN

Platinum nanoparticles (PtNPs) are increasing in the environment largely due to their wide use and application in automobile and medical industries. The mechanism of uptake behavior of different-sized PtNPs and their association with PtNPs-induced phytotoxicity to plants remains unclear. The present study investigated PtNP uptake mechanisms and phytotoxicity simultaneously to further understand the accumulation and transformation dynamics. The uptake mechanisms were investigated by comparing the uptake and toxicological effects of three different-sized PtNPs (25, 50, and 70 nm) on rice seedlings across an experimental concentration gradient (0.25, 0.5, and 1 mg/L) during germination. The quantitative and qualitative results indicated that 70 nm-sized PtNPs were more efficiently transferred in rice roots. The increase in the PtNP concentration restricted the particle uptake. Particle aggregation was common in plant cells and tended to dissolve on root surfaces. Notably, the dissolution of small particles was simultaneous with the growth of larger particles after PtNPs entered the rice tissues. Ionomic results revealed that PtNP accumulation induced element homeostasis in the shoot ionome. We observed a significant positive correlation between the PtNP concentration and Fe and B accumulation in rice shoots. Compared to particle size, the exposure concentration of PtNPs had a stronger effect on the shoot ionomic response. Our study provides better understanding of the correlation of ionomic change and NP quantitative accumulation induced by PtNPs in rice seedlings.


Asunto(s)
Nanopartículas del Metal , Oryza , Plantones , Platino (Metal)/farmacología , Nanopartículas del Metal/toxicidad , Raíces de Plantas
8.
Environ Res ; 224: 115447, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758919

RESUMEN

A green, high-efficiency, and wide pH tolerance water remediation process has been urgently acquired for the increasingly exacerbating contaminated water. In this study, a Fe3+/persulfate (Fe3+/PS) system was employed and enhanced with a green natural ligand cysteine (Cys) for the degradation of quinclorac (QNC). The introduction of Cys into the Fe3+/PS system widened the effective pH range to 9 with a superior removal rate for QNC. The mechanism revealed that the Fe3+/Cys/PS system can enhance the ability of degrading QNC by accelerating the Fe3+/Fe2+ redox cycle, maintaining Fe2+ concentration and thereby generating more HO• and SO4•-. The impact factors (i.e., pH, concentrations of PS, Fe3+ and Cys) were optimized as well. This work provides a promising strategy with high catalytic activity and wide pH tolerance for organic contaminated water remediation.


Asunto(s)
Quinolinas , Contaminantes Químicos del Agua , Purificación del Agua , Cisteína/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis , Tecnología Química Verde
9.
Environ Res ; 227: 115737, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972776

RESUMEN

As indicated in the call for papers posted for this Special Issue, Soil Science deals with various environmental compartments, so it is closely related to Environmental Research. It is clear that synergisms and collaboration are keys to reach the most fruitful relations among different sciences and scientists, and especially in all that focused on the Environment. In this line, considering Soil Science, Environmental Research, and the multiple and complex eventual combinations involving them, could give new highly interesting works focused on any of the specific subjects covered, as well as on relations among these sciences. The main objective should be going further in positive interactions that could help in protecting the Environment, proposing solutions to face hazards that are drastically threatening our planet. In view of that, the Editors of this Special Issue invited researchers to submit high-quality manuscripts including new experimental data, as well as scientifically founded discussion and reflections on the matter. The VSI has received 171 submissions, with 27% of them being accepted after peer-review. The Editors think that the papers included in this VSI have high scientific value and provide scientific knowledge on the field. In this editorial piece the Editors include comments and reflections on the papers published in the SI.

10.
Environ Res ; 220: 115093, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574801

RESUMEN

Uranium is well-known to have serious adverse effects on the ecological environment and human health. Bioremediation stands out among many remediation methods owing to its being economically feasible and environmentally friendly. This study reported a great promising strategy for eliminating uranium by Stenotrophomonas sp. CICC 23833 in the aquatic environment. The bacterium demonstrated excellent uranium adsorption capacity (qmax = 392.9 mg/g) because of the synergistic effect of surface adsorption and intracellular accumulation. Further analysis revealed that hydroxyl, carboxyl, phosphate groups and proteins of microorganisms were essential in uranium adsorption. Intracellular accumulation was closely related to cellular activity, and the efficiency of uranium processing by the permeabilized bacterial cells was significantly improved. In response to uranium stress, the bacterium was found to release multiple ions in conjunction with uranium adsorption, which facilitates the maintenance of bacterial life activities and the conversion of uranyl to precipitates. These above results indicated that Stenotrophomonas sp. Had great potential application value for the remediation of uranium.


Asunto(s)
Uranio , Humanos , Adsorción , Stenotrophomonas/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo
11.
Appl Microbiol Biotechnol ; 107(21): 6703-6716, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676290

RESUMEN

The continuous obstacles of cropping cause severe economic loss, which seriously threaten agricultural sustainable development. In addition, managing excess waste, such as potato peel and mineral waste residues, is a vital burden for industry and agriculture. Therefore, we explored the feasibility of reductive soil disinfestation (RSD) with potato peel and amendment with iron mineral waste residues for the production of Fritillaria thunbergii, which is vulnerable to continuous obstacles. In this study, the influences of iron mineral, RSD with different organic maters, as well as the combined effects of iron mineral and RSD on Fritillaria rhizosphere soil physicochemical properties, microbial communities, and Fritillaria production were investigated. The results revealed that the RSD treatments with potato peel significantly reduced the soil salinity and increased the soil pH, microbial activity, organic matter, and the contents of K and Ca. RSD with potato peel also significantly thrived of the beneficial microbes (Bacillus, Azotobacter, Microvirga, and Chaetomium), and down-regulated potential plant pathogens. RSD with potato peel significantly promoted F. thunbergii yield and quality. Moreover, the combined effects of RSD and iron mineral amendment further enhanced soil health, improved microbial community composition, and increased the yield and peimisine content of F. thunbergii by 24.2% and 49.3%, respectively. Overall, our results demonstrated that RSD with potato peel and amendment with iron mineral waste residues can efficiently improve soil fertility, modify the microbial community, and benefit for both the sustainable production of F. thunbergii and the management of waste. KEY POINTS: • RSD increases soil pH, organic matter, microbial activity, and mineral content • RSD with potato peel enriches beneficial microbes and decreases plant pathogens • PP + Fe treatment increases Fritillaria yield by 24.2% and peimisine content by 49.3.

12.
J Environ Sci (China) ; 125: 160-170, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375902

RESUMEN

Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1-50), and reached a TN removal efficiency of 96% in the following 90 days (days 51-140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.


Asunto(s)
Nitrógeno , Zeolitas , Desnitrificación , Reactores Biológicos , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Aguas Residuales , Aguas del Alcantarillado
13.
Environ Sci Technol ; 56(4): 2466-2475, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099937

RESUMEN

Benzotriazole ultraviolet stabilizers (BUVSs) are ubiquitous emerging pollutants that have been reported to show estrogenic disruption effects through interaction with the classic estrogen receptors (ERs) in the fashion of low activity. The present study aims at revealing the potential disruption mechanism via estrogen-related receptors α and γ (ERRα and ERRγ) pathways. By the competitive binding assay, we first found that BUVSs bond to ERRγ ligand binding domain (ERRγ-LBD) with Kd ranging from 0.66 to 19.27 µM. According to the results of reporter gene assays, the transcriptional activities of ERRα and ERRγ were promoted by most tested BUVSs with the lowest observed effective concentrations (LOEC) from 10 to 100 nM, which are in the range of human exposure levels. At 1 µM, most tested BUVSs showed higher agonistic activity toward ERRγ than ERRα. The most effective two BUVSs promoted the MCF-7 proliferation dependent on ERRα and ERRγ with a LOEC of 100 nM. The molecular dynamics simulation showed that most studied BUVSs had lower binding free energy with ERRγ than with ERRα. The structure-activity relationship analysis revealed that molecular polarizability, electron-donating ability, ionization potential, and softness were the main structural factors impacting the binding of BUVSs with ERRγ. Overall, our results provide novel insights into the estrogenic disruption effects of BUVSs.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Proliferación Celular , Estrógenos , Femenino , Humanos , Receptores de Estrógenos/metabolismo , Triazoles , Receptor Relacionado con Estrógeno ERRalfa
14.
Environ Res ; 212(Pt B): 113226, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452667

RESUMEN

Biochar has caught great attention over the last decade with the loose and porous structure, and carbon stability provides suitable living conditions for the growth and activity of microorganisms. This review provided a comprehensive summary of biochar immobilization microbe (BIM) in water and soil decontamination. Firstly, the bacterial immobilization techniques including adsorption, entrapping, and covalence methods were exhibited. Secondly, the applications of BIM in water and soil environmental remediation were introduced, mainly including the treatment of organic pollutants, heavy metals, and N/P, among which the most frequently immobilized microorganism was Bacillus. Then, the mechanisms of adsorption, redox, and degradation were analyzed. Finally, pertinent questions for future research of BIM technology were proposed. The purpose of this paper is to provide useful background information for the selection of better biochar fixation microorganisms for water and soil remediation.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Carbón Orgánico/química , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Agua
15.
Environ Res ; 205: 112244, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688645

RESUMEN

Chemical fertilizer is gaining increasing attention and has been the center of much research which indicating complex beneficial and harmful effects. Chemical fertilizer might cause some environmental hazards to the biosphere, especially in the agricultural ecosystem. The application of silicon (Si) fertilizer in agriculture has been proved to be able to create good economic and environmental benefits. Si is the second most abundant earth crust element. Si fertilizer improves soil quality and alleviates biotic and abiotic crop stress. It is of great significance to understand the function of Si fertilizer in agricultural utilization and environmental remediation. This paper reviews the Si-based fertilizer in farmland use and summarizes prior research relevant with characterization, soil quality improvement, and pollution remediation effects. Its use in agriculture enhances plant silicon uptake, mediates plant salt and drought stress and remediates heavy metals such as Al, As, Cd, Cu, Zn and Cr. This article also summarizes the detoxification mechanism of silicon and its effects on plant physiological activity such as photosynthesis and transpiration. Fertilizer materials and crop fertilizer management were also considered. Foliar spraying is an effective method to improve crop growth and yield and reduce biotic or abiotic stress. Silicon nanoparticle material provides potential with great potential and prospects. More investigation and research are prospected to better understand how silicon impacts the environment and whether it is a beneficial additive.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ecosistema , Metales Pesados/análisis , Metales Pesados/toxicidad , Silicio , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
16.
J Environ Manage ; 316: 115209, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533594

RESUMEN

In this editorial piece, the Editors of the Virtual Special Issue (VSI) "New Trends on Green Energy and Environmental Technologies, with Special Focus on Biomass Valorization, Water and Waste Recycling", present summarized data corresponding to the accepted submissions, as well as additional comments regarding the thematic of the VSI. Overall, 83 manuscripts were received, with final publication of those having the highest quality, accepted after peer-reviewing. The Editors think that the result is a set of very interesting papers that increase the knowledge on the matter, and which would be useful for researchers and the whole society.


Asunto(s)
Reciclaje , Agua , Biomasa
17.
Environ Res ; 197: 111144, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33844966

RESUMEN

The disadvantages of limited working pH range and poor stability have hindered the practical application of traditional electro-Fenton process. In this research, a novel heterogeneous electro-Fenton (HEF) process with FeIIFeIII layered double hydroxide/carbon felt (FeIIFeIII LDH/CF) as cathode was developed for the rapid destruction of ciprofloxacin (CIP) in bulk solution. Effects of crucial influencing factors (initial pH, current intensity) on CIP degradation were investigated. Results indicated that FeIIFeIII LDH/CF cathode was efficient for CIP degradation (88.11%). Furthermore, CIP degradation performance in HEF could remain stable over wide range of pH (pH 3-9). The catalytic degradation of CIP in HEF process might be a combined effect of homogeneous EF reaction, anodic oxidation, and surface catalysis process via≡FeII/≡FeIII cycle. Possible degradation pathways were proposed. The results suggested that FeIIFeIII LDH/CF cathode showed great application potential for CIP degradation.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Carbono , Fibra de Carbono , Electrodos , Compuestos Férricos , Peróxido de Hidrógeno , Hidróxidos , Oxidación-Reducción
18.
Environ Res ; 201: 111582, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171370

RESUMEN

The Editors of the Virtual Special Issue (VSI) "New Research on Water, Waste and Energy Management, with Special Focus on Antibiotics and Priority Pollutants" (VSI WWEM-20) here present details corresponding to papers that have been accepted, as well as further comments on the matter. It should be noted that the VSI should be associated to a Conference that had been initially programmed to be held in Rome during the summer of 2020, Unfortunately, it was postponed due to the COVID-19 pandemic. That conference was one of those within the series called "International Congress on Water, Waste and Energy Management". Although the Conference was postponed, the Call for Papers for the VSI was maintained by this journal. As a result, a set of very interesting papers were accepted after a careful peer-review process. We hope that it will be complemented with additional VSIs associated to future conferences corresponding to the series, increasing the knowledge on the topic.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Antibacterianos , Humanos , Pandemias , SARS-CoV-2 , Aguas Residuales , Agua
19.
Environ Res ; 201: 111601, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181926

RESUMEN

The Virtual Special Issue (VSI) "New research on reduction and/or elimination of hazardous substances in the design, manufacture and application of chemical products" was initially associated to the "International Conference on Green Chemistry and Sustainable Engineering, GreenChem-20" that was postponed due to the COVID-19 pandemic. Anyway, the international conference will take place in the near future. However, the VSI was maintained in this journal, received a high number of submissions, and selected manuscripts have been accepted after peer-reviewing. The published papers constitute a set of high-quality contributions, which, in the future, could be complemented with others related to additional conferences about similar topics. In this editorial piece, the Editors include brief comments on papers accepted for publication in the Special Issue, as well as additional aspects of interest related to the subject.


Asunto(s)
COVID-19 , Sustancias Peligrosas , Sustancias Peligrosas/toxicidad , Humanos , Pandemias , SARS-CoV-2
20.
Environ Res ; 200: 111371, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34081973

RESUMEN

Sodium percarbonate (SPC) is considered a potential alternative to liquid hydrogen peroxide (H2O2) in organic compounds contaminated water/soil remediation due to its regularly, transportable, economical, and eco-friendly features. The solid state of SPC makes it more suitable to remediate actual soil and water with a milder H2O2 release rate. Apart from its good oxidative capacity, alkaline SPC can simultaneously remediate acidized solution and soil to the neutral condition. Conventionally, percarbonate-based advanced oxidation process (P-AOPs) system proceed through the catalysis under ultraviolet ray, transition metal ions (i.e., Fe2+, Fe3+, and V4+), and nanoscale zero-valent metals (iron, zinc, copper, and nickel). The hydroxyl radical (•OH), superoxide radical (•O2-), and carbonate radical anion (•CO3-) generated from sodium percarbonate could attack the organic pollutant structure. In this review, we present the advances of P-AOPs in heterogeneous and homogeneous catalytic processes through a wide range of activation methods. This review aims to give an overview of the catalysis and application of P-AOPs for emerging contaminants degradation and act as a guideline of the field advances. Various activation methods of percarbonate are summarized, and the influence factors in the solution matrix such as pH, anions, and cations are thoroughly discussed. Moreover, this review helps to clarify the advantages and shortcomings of P-AOPs in current scientific progress and guide the future practical direction of P-AOPs in sustainable carbon catalysis and green chemistry.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Carbonatos , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA