Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Small ; 20(9): e2304866, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863810

RESUMEN

Grain boundaries (GBs)-triggered severe non-radiative recombination is recently recognized as the main culprits for carrier loss in polycrystalline kesterite photovoltaic devices. Accordingly, further optimization of kesterite-based thin film solar cells critically depends on passivating the grain interfaces of polycrystalline Cu2 ZnSn(S,Se)4 (CZTSSe) thin films. Herein, 2D material of graphene is first chosen as a passivator to improve the detrimental GBs. By adding graphene dispersion to the CZTSSe precursor solution, single-layer graphene is successfully introduced into the GBs of CZTSSe absorber. Due to the high carrier mobility and electrical conductivity of graphene, GBs in the CZTSSe films are transforming into electrically benign and do not act as high recombination sites for carrier. Consequently, benefitting from the significant passivation effect of GBs, the use of 0.05 wt% graphene additives increases the efficiency of CZTSSe solar cells from 10.40% to 12.90%, one of the highest for this type of cells. These results demonstrate a new route to further increase kesterite-based solar cell efficiency by additive engineering.

2.
Small ; 18(39): e2203443, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026573

RESUMEN

Solution processing of Cu(In,Ga)Se2 (CIGS) absorber is a highly promising strategy for a cost-effective CIGS photovoltaic device. However, the device performance of solution-processed CIGS solar cells is still hindered by the severe non-radiative recombination resulting from deep defects and poor crystal quality. Here, a simple and effective precursor film engineering strategy is reported, where Cu-rich (CGI >1) CIGS layer is incorporated into the bottom of the CIGS precursor film. It has been discovered that the incorporation of the Cu-rich CIGS layer greatly improves the absorber crystallinity and reduces the trap state density. Accordingly, more efficient charge generation and charge transfer are realized. As a result of systematic processing optimization, the champion solution-processed CIGS device delivers an improved open-circuit voltage of 656 mV, current density of 33.15 mA cm-2 , and fill factor of 73.78%, leading to the high efficiency of 16.05%.

3.
Small ; 18(4): e2104215, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34841671

RESUMEN

Although the rapid development of polymer solar cells (PSCs) has been achieved, it is still a great challenge to explore efficient ways for improving power conversion efficiency (PCE) of PSCs from materials and device engineering. Ternary strategy has been confirmed as an efficient way to improve PCE of PSCs by employing three kinds of materials. In this work, one polymer donor PM6, and two non-fullerene materials N3 and MF1 are selected to prepare ternary PSCs with layer-by-layer (LbL) or bulk-heterojunction (BHJ) structure. The LbL and BHJ-PSCs exhibit PCEs of 16.75% and 16.76% with 15 wt% MF1 content in acceptors, corresponding to over 5% or 4% PCE improvement compared with N3-based binary PSCs with LbL or BHJ structure. The PCE improvement is mainly attributed to the fill factor enhancement from 73.29% to 76.95% for LbL-PSCs or from 74.13% to 77.51% for BHJ-PSCs by employing the ternary strategy. This work indicates that ternary strategy has great potential in preparing highly efficient LbL-PSCs via simultaneously optimizing molecular arrangement and the thickness of each layer.

4.
Macromol Rapid Commun ; 43(15): e2200345, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35445480

RESUMEN

A series of binary and ternary polymer solar cells (PSCs) is successfully fabricated. The optimal ternary PSCs achieve a power conversion efficiency (PCE) of 18.14%, benefiting from the increased short circuit current density (JSC ) of 26.53 mA cm-2 and fill factor (FF) of 78.51% in comparison with the JSC s (25.05 mA cm-2 and 25.65 mA cm-2 ) and the FFs (77.13% and 76.55%) of the corresponding binary PSCs. The photon harvesting ability of ternary active layers can be enhanced, which can be confirmed from the EQE spectral difference of the optimized ternary and binary PSCs, especially in the wavelength range from 680 nm to 800 nm. The refractive index and extinction coefficients of binary and ternary blend films are measured, which can well support the enhanced photon harvesting ability in different wavelength ranges. Photogenerated exciton distribution in active layers is simulated by the transmission matrix method based on the Beer-Lambert law. The photogenerated exciton density can be enhanced in the middle of the active layers by incorporating a third component in acceptors, which is conducive to charge collection by individual electrodes, resulting in the simultaneously enhanced JSC and FF of the optimal ternary PSCs.

5.
Inorg Chem ; 58(19): 13285-13292, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31538482

RESUMEN

The earth-abundant Cu2ZnSnS4 (CZTS) quantum dots (QDs) have emerged as one potential substitute to toxic cadmium or rare indium QDs, but their application in quantum dot-sensitized solar cells (QDSSCs) is still limited by the improper particle size and the rigorous synthesis and ligand exchange conditions. Herein, we developed a one-pot hot injection method by using Tri-n-octylphosphine oxide (TOPO) as the solvent and oleylamine as the capping agent to synthesize Cu2ZnSn(S,Se)4 (CZTSSe) QDs with adjustable size and narrow size distribution. The key feature of this approach is that we can take advantage of the high-temperature nucleation, low-temperature growth, and strong reducibility of NaHB4 to prepare small-sized CZTSSe QDs without using 1-dodecanethiol (DDT) and to extend the light harvesting range through Se incorporation. After Se incorporation, it turns out that the conduction band (CB) level of CZTSSe QDs decreases, implying that the injection driving force of the electron to the CB of TiO2 films becomes weaker and a larger recombination would be induced at the TiO2/QDs/electrolyte interface. Benefiting from the broadened optoelectronic response range, the induced higher Jsc (16.80 vs 14.13 mA/cm2) finally leads to the increase of the conversion efficiency of CZTSSe QDSSC from 3.17% to 3.54% without further modification. Despite the fact that the efficiency is still far behind those of literature reported values through use of other chalcogenide sensitizers, this DDT-free approach solves the main hindrance for the application of CZTSSe QDs in QDSSCs and holds a more convenient way for ligand exchange, light absorption improvement, and particle size control.

6.
Opt Express ; 24(22): A1349-A1359, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828521

RESUMEN

p-type inorganic hole transport materials of Li, Cu-codoped NiOx films were deposited using a simple solution-based process. The as-prepared films were used as hole selective contacts for lead halide perovskite solar cell. An enhanced power conversion efficiency of 14.53% has been achieved due to the improved electrical conductivity and optical transmittance of the Li, Cu-codoped NiOx electrode interlayer.

7.
Adv Mater ; 36(16): e2311918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193380

RESUMEN

Surfaces display discontinuities in the kesterite-based polycrystalline films can produce large defect densities, including strained and dangling bonds. These physical defects tend to introduce electronic defects and surface states, which can greatly promote nonradiative recombination of electron-hole pairs and damage device performance. Here, an effective chelation strategy is reported to suppress these harmful physical defects related to unterminated Cu, Zn, and Sn sites by modifying the surface of Cu2ZnSn(S,Se)4 (CZTSSe) films with sodium diethyldithiocarbamate (NaDDTC). The conjoint theoretical calculations and experimental results reveal that the NaDDTC molecules can be coordinate to surface metal sites of CZTSSe films via robust bidentate chelating interactions, effectively reducing surface undercoordinated defects and passivating the electron trap states. Consequently, the solar cell efficiency of the NaDDTC-treated device is increased to as high as 13.77% under 100 mW cm-2 illumination, with significant improvement in fill factor and open-circuit voltage. This surface chelation strategy provides strong surface termination and defect passivation for further development and application of kesterite-based photovoltaics.

8.
Adv Sci (Weinh) ; : e2405016, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031982

RESUMEN

It has been validated that enhancing crystallinity and passivating the deep-level defect are critical for improving the device performance of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Coordination chemistry interactions within the Cu-Zn-Sn-S precursor solution play a crucial role in the management of structural defects and the crystallization kinetics of CZTSSe thin films. Therefore, regulating the coordination environment of anion and cation in the precursor solution to control the formation process of precursor films is a major challenge at present. Herein, a synergetic crystallization modulation and defect passivation method is developed using P2S5 as an additive in the CZTS precursor solution to optimize the coordination structure and improve the crystallization process. The alignment of theoretical assessments with experimental observations confirms the ability of the P2S5 molecule to coordinate with the metal cation sites of CZTS precursor films, especially more liable to the Zn2+, effectively passivating the Zn-related defects, thereby significantly reducing the defect density in CZTSSe absorbers. As a result, the device with a power conversion efficiency of 14.36% has been achieved. This work provides an unprecedented strategy for fabricating high-quality thin films by anion-coordinate regulation and a novel route for realizing efficient CZTSSe solar cells.

9.
Adv Mater ; : e2406246, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032067

RESUMEN

Mixed tin-lead (Sn-Pb) perovskites have attracted the attention of the community due to their narrow bandgap, ideal for photovoltaic applications, especially tandem solar cells. However, the oxidation and rapid crystallization of Sn2+ and the interfacial traps hinder their development. Here, cross-linkable [6,6]-phenyl-C61-butyric styryl dendron ester (C-PCBSD) is introduced during the quenching step of perovskite thin film processing to suppress the generation of surface defects at the electron transport layer interface and improve the bulk crystallinity. The C-PCBSD has strong coordination ability with Sn2+ and Pb2+ perovskite precursors, which retards the crystallization process, suppresses the oxidation of Sn2+, and improves the perovskite bulk and surface crystallinity, yielding films with reduced nonradiative recombination and enhanced interface charge extraction. Besides, the C-PCBSD network deposited on the perovskite surface displays superior hydrophobicity and oxygen resistance. Consequently, the devices with C-PCBSD obtain PCEs of up to 23.4% and retained 97% of initial efficiency after 2000 h of storage in a N2 atmosphere.

10.
Small Methods ; : e2400041, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766987

RESUMEN

High-crystalline-quality absorbers with fewer defects are crucial for further improvement of open-circuit voltage (VOC) and efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. However, the preparation of high-quality CZTSSe absorbers remains challenging due to the uncontrollability of the selenization reaction and the complexity of the required selenization environment for film growth. Herein, a novel segmented control strategy for the selenization environment, specifically targeting the evaporation area of Se, to regulate the selenization reactions and improve the absorber quality is proposed. The large evaporation area of Se in the initial stage of the selenization provides a great evaporation and diffusion flux for Se, which facilitates rapid phase transition reactions and enables the attainment of a single-layer thin film. The reduced evaporation area of Se in the later stage creates a soft-selenization environment for grain growth, effectively suppressing the loss of Sn and promoting element homogenization. Consequently, the mitigation of Sn-related deep-level defects on the surface and in the bulk induced by element imbalance is simultaneously achieved. This leads to a significant improvement in nonradiative recombination suppression and carrier collection enhancement, thereby enhancing the VOC. As a result, the CZTSSe device delivers an impressive efficiency of 13.77% with a low VOC deficit.

11.
Chemistry ; 19(31): 10107-10, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23780791

RESUMEN

On the bright side: A solution-based strategy was developed for in situ synthesis and film deposition of Cu2ZnSnSe4 nanocrystal films (samples a-d). The obtained Cu2ZnSnSe4 nanocrystal films can be used as an effective counter-electrode (CE) material to replace Pt, and yield low-cost, high-efficiency dye-sensitized solar cells (DSSCs). The assembled solar cell devices exhibit an efficiency of 7.82 % under 1 sun irradiation (see figure).

12.
ACS Appl Mater Interfaces ; 15(5): 7247-7254, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36701588

RESUMEN

In this work, layer-by-layer (LbL) polymer solar cells (PSCs) are constructed without/with the incorporation of a dissociation strengthening layer (DSL) on the basis of the wide-bandgap donor D18-Cl, as well as the narrow-bandgap nonfullerene acceptor Y6. The efficiency of LbL PSCs is enhanced from 17.62 to 18.15% through introducing a DSL, originating from the enhanced dissociation of D18-Cl excitons near the ITO electrode. Meanwhile, the interfacial energy between D18-Cl and Y6 layers is decreased by incorporating a DSL, which should facilitate molecular interdiffusion for more adequate exciton dissociation in LbL active layers. This work offers a simple and resultful way for realizing power conversion efficiency (PCE) improvement of LbL PSCs with maximized exciton utilization in LbL active layers. The universality of the DSL incorporation strategy on performance improvement can be further confirmed with a boosted PCE from 17.39 to 18.03% or from 17.13 to 17.61% for D18-Cl/L8-BO- or D18-Cl/N3-based LbL PSCs by incorporating a DSL.

13.
Nanoscale ; 15(20): 8900-8924, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37129945

RESUMEN

Solar cells based on emerging kesterite Cu2ZnSn(S,Se)4 (CZTSSe) materials have reached certified power conversion efficiency (PCE) as high as 13.6%, showing great potential in the next generation of photovoltaic technologies because of their earth-abundant, tunable direct bandgap, high optical absorption coefficient, environment-friendly, and low-cost properties. The predecessor of CZTSSe is Cu(In,Ga) Se2 (CIGS), and the highest PCE of CIGS fabricated by the vacuum method is 23.35%. However, the recorded PCE of CZTSSe devices are fabricated by a low-cost solution method. The characteristics of the solvent play a key role in determining the crystallization kinetics, crystal growth quality, and optoelectronic properties of the CZTSSe thin films in the solution method. It is still challenging to improve the efficiency of CZTSSe solar cells for future commercialization and applications. This review describes the current status of CZTSSe solar cell absorbers fabricated by protic solvents with NH (hydrazine), protic solvents with SH (amine-thiol), aprotic solvents (DMSO and DMF), ethylene glycol methyl ether-based precursor solution method (EGME), and thioglycolic acid (TGA)-ammonia solution (NH3H2O) deposition methods. Furthermore, the performances of vacuum-deposited devices and solution-based processed devices are compared. Finally, the challenges and outlooks of CZTSSe solar cells are discussed for further performance improvement.

14.
ACS Appl Mater Interfaces ; 15(48): 55652-55658, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37991928

RESUMEN

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has been considered as the most promising absorber material for inorganic thin-film solar cells. Among the three main interfaces in CZTSSe-based solar cells, the CZTSSe/Mo back interface plays an essential role in hole extraction as well as device performance. During the selenization process, the reaction between CZTSSe and Mo is one of the main reasons that lead to a large open circuit voltage (VOC) deficit, low short circuit current (Jsc), and fill factor. In this study, 2D Ti3C2-MXene was introduced as an intermediate layer to optimize the interface between the CZTSSe absorber layer and Mo back contact. Benefiting from the 2D Ti3C2-MXene intermediate layer, the reaction between CZTSSe and Mo was effectually suppressed, thus, significantly reducing the thickness of the detrimental Mo(S,Se)2 layer as well as interface recombination at the CZTSSe/Mo back interface. As a result, the power conversion efficiency of the champion device fabricated with the 2D Ti3C2-MXene intermediate layer was improved from 10.89 to 13.14% (active-area efficiency). This study demonstrates the potential use of the 2D Ti3C2-MXene intermediate layer for efficient CZTSSe solar cells and promotes a deeper understanding of the back interface in CZTSSe solar cells.

15.
Front Chem ; 10: 974761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017168

RESUMEN

Kesterite-structured Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaics have attracted considerable attention in recent years because of its low-cost and eco-friendly raw material, as well as high theoretical conversion efficiency. However, its photovoltaic performance is hindered by large open-circuit voltage (V OC ) deficiency due to the presence of intrinsic defects and defect clusters in the bulk of CZTSSe absorber films. The doping of extrinsic cation to the CZTSSe matrix was adopted as an effective strategy to ameliorate defect properties of the solar cell absorbers. Herein, a novel Se&Sb2Se3 co-selenization process was employed to introduce Sb into CZTSSe crystal lattice. The results reveal that Sb-doping plays an active role in the crystallization and grain growth of CZTSSe absorber layer. More importantly, one of the most seriously detrimental SnZn deep defect is effectively passivated, resulting in significantly reduced deep-level traps and band-tail states compared to Sb free devices. As a result, the power conversion efficiency of CZTSSe solar cell is increased significantly from 9.17% to 11.75%, with a V OC especially enlarged to 505 mV from 449 mV. This insight provides a deeper understanding for engineering the harmful Sn-related deep defects for future high-efficiency CZTSSe photovoltaic devices.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35653219

RESUMEN

The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have shown a continuous rise in power conversion efficiencies in the past years. However, the encountered interfacial problems with respect to charge recombination and extraction losses at the CdS/CZTSSe heterojunction still hinder their further development. In this work, an additional plasmonic local electric field is imposed into the CdS/CZTSSe interface through the electrostatic assembly of a two-dimensional (2D) ordered Au@SiO2 NP array onto an aminosilane-modified surface absorber. The interfacial electric properties are tuned by controlling the coverage particle distance, and the finite-difference time domain (FDTD) simulation demonstrates that the strong near-field enhancement mainly occurs near the p-n junction interface. It is shown that the imposed local electric field leads to interfacial electrostatic potential (Velec) augmentation and improves the charge extraction and recombination processes. These electric benefits enable remarkable improvements in open-circuit voltage (Voc) and short-circuit current (Jsc), leading to the cell efficiency being increased from 10.19 to 11.50%. This work highlights the dramatic role of the plasmonic local electric field and the use of the 2D Au@SiO2 NP array to modify a surface absorber instead of the extensively used ion passivation, providing a new strategy for p-n junction engineering in kesterite photovoltaics.

17.
ACS Appl Mater Interfaces ; 14(4): 5149-5158, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35041389

RESUMEN

Indium doping of cadmium sulfide (CdS) by chemical bath deposition (CBD) can be an efficient strategy to boost the CIGSSe efficiency. However, limited by the extremely low solubility of In2S3, it is difficult to increase the In doping contents and inhibit the band energy-level regulation for CdS through the traditional CBD process. In this work, we perform a novel CBD method to prepare an indium-doped CdS (In:CdS) buffer, in which the indium source is sequentially slowly added in the growing aqueous solution. In this process, the In ion concentration involved in the real-time deposition is significantly reduced. Thus, compact and uniform In:CdS with higher indium doping content is obtained. Indium doping can elevate the CdS conduction band edge and construct a more favorable spike band alignment with a CIGSSe absorber. Moreover, it introduces efficient carrier transport and reduced interface defect density. As a result, improved CIGSSe heterojunction quality is realized by utilizing In:CdS. Also, the solution-processed CIGSSe device with In:CdS as a buffer yields a high efficiency of 16.4%, with a high VOC of 670 mV and an FF of 75.3%.

18.
ACS Appl Mater Interfaces ; 14(40): 45636-45643, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36172726

RESUMEN

Broadband photomultiplication-type organic photodetectors (PM-OPDs) were prepared with PMBBDT:PY3Se-2V (1:1, wt/wt) as the absorbing layer (AL) and PC71BM:P3HT (100:5, wt/wt) as the photomultiplication layer (PML) on the basis of the sandwich structure. The incident photons from ultraviolet light to the near-infrared region can be harvested by AL. The rather less P3HT in PML can produce plenty of isolated hole traps with P3HT surrounded by PC71BM; the electron tunneling injection induced by trapped holes near the Ag electrode can lead to the photomultiplication (PM) phenomenon. The performance of PM-OPDs can be effectively improved by optimizing the AL thickness. The optimal PM-OPDs exhibit a broad spectral response from 300 to 1050 nm as well as an external quantum efficiency (EQE) of 5800% at 340 nm at 10 V bias, along with a specific detectivity (D*) of 3.78 × 1013 Jones. The spectral response of PM-OPDs is controlled by the trapped-hole distribution near the Ag electrode, primarily originating from the photogenerated holes in AL. To further optimize the spectral response of PM-OPDs, the optical filter layer (OFL) was used to manipulate light field distribution in AL. The violet, red, and near-infrared-light PM-OPDs were developed by employing different OFLs.

19.
Nanoscale ; 15(1): 185-194, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36475511

RESUMEN

The main bottleneck in the development of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is their very low VOC due to severe carrier recombination. Specifically, due to the poor defect environment and unfavorable band structure, carrier recombination at the front interface is considered to be one of the most serious issues. Thus, to reduce the interface recombination and VOC deficit, we propose a convenient and effective strategy for Cd gradient doping near the front interface during selenization. The formed Cd gradient significantly reduced the CuZn defects and related [2CuZn + SnZn] defect clusters near the CZTSSe-CdS heterojunction, thus significantly suppressing the interface recombination near the heterojunction. Benefitting from the formed Cd gradient, a champion device with 12.14% PCE was achieved with the VOC significantly improved from 432 mV to 486 mV. The proposed element gradient doping strategy can offer a new idea for selenization and element gradient doping in other photoelectric devices.

20.
ACS Appl Mater Interfaces ; 13(1): 795-805, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33397088

RESUMEN

Although the traditional Cu-poor architecture addresses many limitations for Cu2ZnSn(S,Se)4 solar cells, its further development still encounters a bottleneck in terms of efficiency, primarily arising from the inferior charge transport within the quasineutral region and enlarged recombination at back contact. On the contrary, the electrical benign kesterite compound with higher Cu content may compensate for these shortages, but it will degrade device performance more pronouncedly at front contact because of the Fermi level pinning and more electric shunts. Based on the electric disparities on their independent side, in this work, we propose a new status of Cu component by exploring a large grain/fine grain/large grain trilayer architecture with higher Cu content near back contact and lower Cu content near front contact. The benefits of this bottom Cu-higher strategy are that it imposes a concentration gradient to drive carrier diffusion toward front contact and decreases the valence band edge offset in the rear of the device to aid in hole extraction. Also, it maintains the Cu-poor architecture at the near surface to facilitate hole quasi-Fermi level splitting. In return, the local Cu component engineering-mediated electric advances contribute to the highest efficiency of 12.54% for kesterite solar cells using amine-thiol solution systems so far.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA