Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 130-139, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142154

RESUMEN

Manufacturing of copper micro-patterns is crucial in electronics for its utilization as high conductivity transparent conductive films (TCFs) and circuits. In the preparation process of current TCFs, a plethora of materials have emerged that can replace traditional indium tin oxide (ITO). However, even for the most promising metal-based nanowire materials, there are issues such as high cost, complex welding, and high contact resistance. To address these problems, this paper proposes a printable and filament-drawable polydimethylsiloxane (PDMS)-based adhesive, which, through a novel additive patterning technology, efficiently and economically manufactures self-welding copper micro-meshes and circuits. The adhesive can be processed into micro-patterns through printing and filament drawing, on which ionic Ag can be in situ reduced and anchored, thereby eliminating the need for tedious pre- and post-treatment steps. The fully exposed Ag particles dramatically minimize the usage of precious metal catalyst, thus efficiently catalyzing electroless copper deposition (ECD) reaction. Highly conductive (1.03 × 107 S m-1) copper circuits can be fabricated on the printed adhesive patterns, exhibiting versatile applicability to diverse substrates. Highly precise copper micro-meshes (∼50 µm) can be fabricated on the filament networks drawn by the adhesive. The copper meshes undergo complete self-welding at junctions during the ECD process, thus exhibiting ultra-low square resistance of 0.45 Ω sq-1 while maintaining a high transmittance of 82.2 %. This is far superior to most of TCFs in published literature.

2.
Biomed Pharmacother ; 171: 116203, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280330

RESUMEN

Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.


Asunto(s)
Neoplasias , Escape del Tumor , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA