Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Clin Exp Pathol ; 13(3): 447-455, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269681

RESUMEN

This study aims to study the protective effect and mechanism of carnosol on intestinal oxidative stress. Porcine intestinal epithelial cells (ZYM-SIEC02) were pretreated with carnosol. Tert-butyl hydroperoxide (t-BHP) was added to stimulate the cells. The cell colonization and viability were detected by Edu staining, MTT, and cell counting kit-8 (CCK8) assays. The expressions of reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) in intracellular and oxidative stress were detected. The expression of related genes and proteins in cells was detected by real-time PCR and western blot. The regulatory mechanisms were identified by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays. The results showed that t-BHP reduced cell proliferation and viability, while cells pretreated with carnosol had resistance to t-BHP, decreased intracellular ROS, MDA and NO levels, and increased SOD content. The mRNA and protein levels of heme oxygenase 1/Nuclear respiratory factor 2 (HO-1/Nrf-2) in ZYM-SIEC02 cells treated with carnosol were significantly increased. Nrf2 was able to bind to cell cycle negative regulatory protein p21 Nrf2 could bind to the promoter regions of cyclin D1 (CCND1) and SOD genes. In conclusion, carnosol has a protective effect on intestinal epithelial cells by up-regulating the expression of Nrf2 and inhibiting p21 protein to promote the expression of CCND1 and SOD.

2.
RSC Adv ; 10(12): 7004-7010, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35493874

RESUMEN

Two new homo chiral Cu-Ln (Ln = Gd and Ho) compounds bearing a chiral Schiff base ligand (1R,3S)-N',N''-bis[3-methoxysalicylidene]-1,3-diamino-1,2,2-trimethylcyclopentane (H2L) have been synthesized and characterized by elemental analysis, IR spectroscopic and single-crystal X-ray diffraction techniques. The compounds were found to exhibit 1D zig-zag skeletons with double µ-1,5 bridging dicyanamide anions. Circular dichroism (CD) spectra have been used to verify their chiroptical activities. Magnetic studies suggest that 1 and 2 hold the same magnetic behavior with the dinuclear compounds presenting ferromagnetic interaction. Furthermore, both compounds show ferroelectricity with the remnant polarization (P r) value of 0.23 and 0.18 µC cm-2 at room temperature, respectively.

3.
J Agric Food Chem ; 68(36): 9776-9788, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32790307

RESUMEN

Honey fraud has an extensive global magnitude and impacts both honey price and beekeeper viability. This study aimed at investigating the characteristic phytochemicals of rape, acacia, and linden honey to verify honey authenticity. We discovered methyl syringate, phaseic acid, and lindenin (4-(2-hydroxypropan-2-yl) cyclohexa-1,3-diene-1-carboxylic acid) as particular or unique phytochemicals of rape, acacia, and linden honey. Methyl syringate and lindenin were the most abundant components in rape and linden honey; moreover, their average contents reached up to 10.44 and 21.25 mg/kg, respectively. The average content of phaseic acid was 0.63 mg/kg in acacia honey. To our knowledge, the presence of phaseic acid in honey is a novel finding. Furthermore, we established the HPLC fingerprints of three monofloral honeys. We offered assessment criteria and combined characteristic components with standard fingerprints to evaluate the authenticity of commercial rape, acacia, and linden honeys. For uncertain commercial honey samples, genuine pure honeys constituted nearly 70%. We differentiate the adulteration of acacia and linden honeys with low-price rape honey. Our results reveal that 10% of commercial honeys were pure syrups. Overall, we seem to propose a novel and reliable solution to assess the authenticity of monofloral honey.


Asunto(s)
Acacia/química , Brassica/química , Contaminación de Alimentos/análisis , Miel/análisis , Tilia/química , Flores/química , Contaminación de Alimentos/economía , Miel/economía , Fitoquímicos/análisis , Sesquiterpenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA