Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579974

RESUMEN

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Genómica/métodos , Neoplasias Cutáneas/metabolismo , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , RNA-Seq , Análisis de la Célula Individual , Piel/metabolismo , Neoplasias Cutáneas/patología , Transcriptoma , Trasplante Heterólogo
2.
Immunity ; 55(6): 1118-1134.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35447093

RESUMEN

Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.


Asunto(s)
Infecciones por VIH , Ácidos Nucleicos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos , Virus ADN , Terapia de Inmunosupresión , Macaca mulatta , Macrófagos , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral
3.
Cell ; 165(3): 566-79, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27087445

RESUMEN

Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is the C-terminal cleavage product of profibrillin, and we name it Asprosin. Asprosin is secreted by white adipose, circulates at nanomolar levels, and is recruited to the liver, where it activates the G protein-cAMP-PKA pathway, resulting in rapid glucose release into the circulation. Humans and mice with insulin resistance show pathologically elevated plasma asprosin, and its loss of function via immunologic or genetic means has a profound glucose- and insulin-lowering effect secondary to reduced hepatic glucose release. Asprosin represents a glucogenic protein hormone, and therapeutically targeting it may be beneficial in type II diabetes and metabolic syndrome.


Asunto(s)
Ayuno/metabolismo , Proteínas de Microfilamentos/metabolismo , Fragmentos de Péptidos/metabolismo , Hormonas Peptídicas/metabolismo , Tejido Adiposo Blanco/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/administración & dosificación , Ritmo Circadiano , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ayuno/sangre , Femenino , Retardo del Crecimiento Fetal/metabolismo , Fibrilina-1 , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas de Microfilamentos/sangre , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Hormonas Peptídicas/sangre , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Progeria/metabolismo , Proteínas Recombinantes/administración & dosificación , Alineación de Secuencia
5.
Nature ; 619(7970): 572-584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468586

RESUMEN

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Asunto(s)
Intestinos , Análisis de la Célula Individual , Humanos , Diferenciación Celular/genética , Cromatina/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/inmunología , Análisis de Expresión Génica de una Sola Célula
6.
Nat Methods ; 20(2): 304-315, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624212

RESUMEN

The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.


Asunto(s)
COVID-19 , Proteómica , Humanos , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Pulmón , Análisis de la Célula Individual/métodos
7.
PLoS Biol ; 21(1): e3001688, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693045

RESUMEN

Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes.


Asunto(s)
Esquizofrenia , Ritmo Ultradiano , Humanos , Corteza Prefontal Dorsolateral , Esquizofrenia/genética , Sueño , Encéfalo , Corteza Prefrontal/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(20): e2218229120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155905

RESUMEN

Castration-resistant prostate cancer (CRPC) poses a major clinical challenge with the androgen receptor (AR) remaining to be a critical oncogenic player. Several lines of evidence indicate that AR induces a distinct transcriptional program after androgen deprivation in CRPCs. However, the mechanism triggering AR binding to a distinct set of genomic loci in CRPC and how it promotes CRPC development remain unclear. We demonstrate here that atypical ubiquitination of AR mediated by an E3 ubiquitin ligase TRAF4 plays an important role in this process. TRAF4 is highly expressed in CRPCs and promotes CRPC development. It mediates K27-linked ubiquitination at the C-terminal tail of AR and increases its association with the pioneer factor FOXA1. Consequently, AR binds to a distinct set of genomic loci enriched with FOXA1- and HOXB13-binding motifs to drive different transcriptional programs including an olfactory transduction pathway. Through the surprising upregulation of olfactory receptor gene transcription, TRAF4 increases intracellular cAMP levels and boosts E2F transcription factor activity to promote cell proliferation under androgen deprivation conditions. Altogether, these findings reveal a posttranslational mechanism driving AR-regulated transcriptional reprogramming to provide survival advantages for prostate cancer cells under castration conditions.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos , Antagonistas de Andrógenos , Factor 4 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Ubiquitinación , Regulación Neoplásica de la Expresión Génica
9.
Hepatology ; 77(3): 1022-1035, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35591797

RESUMEN

The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and primarily stem from daily cycles of rest-activity and fasting-feeding. Although a large body of evidence supports the reciprocal regulation of circadian rhythms and liver function, the research on the hepatic ultradian rhythms have largely been lagging behind. However, with the advent of more cost-effective high-throughput omics technologies, high-resolution time-lapse imaging, and more robust and powerful mathematical tools, several recent studies have shed new light on the presence and functions of hepatic ultradian rhythms. In this review, we will first very briefly discuss the basic principles of circadian rhythms, and then cover in greater details the recent literature related to ultradian rhythms. Specifically, we will highlight the prevalence and mechanisms of hepatic 12-h rhythms, and 8-h rhythms, which cycle at the second and third harmonics of circadian frequency. Finally, we also refer to ultradian rhythms with other frequencies and examine the limitations of the current approaches as well as the challenges related to identifying ultradian rhythm and addressing their molecular underpinnings.


Asunto(s)
Ritmo Ultradiano , Animales , Ciclos de Actividad/fisiología , Ritmo Circadiano/fisiología , Ayuno , Hígado , Mamíferos
10.
Nature ; 556(7700): 249-254, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29615789

RESUMEN

Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Fosfofructoquinasa-2/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 4/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones , Metástasis de la Neoplasia , Vía de Pentosa Fosfato , Fosforilación , Fosfoserina/metabolismo , Pronóstico , Purinas/biosíntesis , Purinas/metabolismo , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Transcetolasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Physiology (Bethesda) ; 37(5): 0, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35658626

RESUMEN

The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and result primarily from rest-activity and fasting-feeding cycles. In this article, I present evidence supporting a temporal compartmentalization of rhythmic hepatic metabolic processes into four main clusters: regulation of energy homeostasis, maintenance of information integrity, immune response, and genetic information flow. I further review literatures and discuss how both the circadian and the newly discovered 12-h ultradian clock work together to regulate these four temporally separated processes in mouse liver, which, interestingly, is largely uncoupled from the liver zonation regulation.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ritmo Circadiano/fisiología , Ayuno , Homeostasis , Hígado/metabolismo , Lógica , Mamíferos , Ratones
12.
PLoS Biol ; 18(1): e3000580, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935211

RESUMEN

Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s's ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways.


Asunto(s)
Relojes Biológicos/genética , Regulación de la Expresión Génica , Ritmo Ultradiano/genética , Proteína 1 de Unión a la X-Box/fisiología , Animales , Células Cultivadas , Ritmo Circadiano/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Factores de Tiempo , Transcripción Genética , Proteína 1 de Unión a la X-Box/genética
13.
Mol Cell ; 60(5): 769-783, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26611104

RESUMEN

A central mechanism for controlling circadian gene amplitude remains elusive. We present evidence for a "facilitated repression (FR)" model that functions as an amplitude rheostat for circadian gene oscillation. We demonstrate that ROR and/or BMAL1 promote global chromatin decondensation during the activation phase of the circadian cycle to actively facilitate REV-ERB loading for repression of circadian gene expression. Mechanistically, we found that SRC-2 dictates global circadian chromatin remodeling through spatial and temporal recruitment of PBAF members of the SWI/SNF complex to facilitate loading of REV-ERB in the hepatic genome. Mathematical modeling highlights how the FR model sustains proper circadian rhythm despite fluctuations of REV-ERB levels. Our study not only reveals a mechanism for active communication between the positive and negative limbs of the circadian transcriptional loop but also establishes the concept that clock transcription factor binding dynamics is perhaps a central tenet for fine-tuning circadian rhythm.


Asunto(s)
Cromatina/metabolismo , Ritmo Circadiano , Hígado/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Regulación de la Expresión Génica , Ratones , Modelos Biológicos , Coactivador 2 del Receptor Nuclear/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
14.
Cell Mol Life Sci ; 78(7): 3127-3140, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33449146

RESUMEN

Biological oscillations often cycle at different harmonics of the 24-h circadian rhythms, a phenomenon we coined "Musica Universalis" in 2017. Like the circadian rhythm, the 12-h oscillation is also evolutionarily conserved, robust, and has recently gained new traction in the field of chronobiology. Originally thought to be regulated by the circadian clock and/or environmental cues, recent new evidences support the notion that the majority of 12-h rhythms are regulated by a distinct and cell-autonomous pacemaker that includes the unfolded protein response (UPR) transcription factor spliced form of XBP1 (XBP1s). 12-h cycle of XBP1s level in turn transcriptionally generates robust 12-h rhythms of gene expression enriched in the central dogma information flow (CEDIF) pathway. Given the regulatory and functional separation of the 12-h and circadian clocks, in this review, we will focus our attention on the mammalian 12-h pacemaker, and discuss our current understanding of its prevalence, evolutionary origin, regulation, and functional roles in both physiological and pathological processes.


Asunto(s)
Fenómenos Fisiológicos Celulares , Regulación de la Expresión Génica , Ritmo Ultradiano , Respuesta de Proteína Desplegada , Animales , Homeostasis , Humanos , Mamíferos
15.
16.
PLoS Genet ; 13(3): e1006650, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273073

RESUMEN

Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Alelos , Animales , Antineoplásicos/química , Carcinogénesis , Carcinoma Hepatocelular/genética , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Inmunoprecipitación de Cromatina , Elementos Transponibles de ADN , Femenino , Eliminación de Gen , Células Hep G2 , Humanos , Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Mutagénesis , Metástasis de la Neoplasia , Trasplante de Neoplasias , Coactivador 2 del Receptor Nuclear/genética , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis de Secuencia de ARN
17.
Mol Carcinog ; 58(9): 1612-1622, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31062422

RESUMEN

Considerable progress has been made during the past 20 years towards elucidating the role of peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in skin cancer. In 1999, the original notion that PPARß/δ was involved with epithelial cell function was postulated based on a correlation between PPARß/δ expression and the induction of messenger RNAs encoding proteins that mediate terminal differentiation in keratinocytes. Subsequent studies definitively revealed that PPARß/δ could induce terminal differentiation and inhibit proliferation of keratinocytes. Molecular mechanisms have since been discovered to explain how this nuclear receptor can be targeted for preventing and treating skin cancer. This includes the regulation of terminal differentiation, mitotic signaling, endoplasmic reticulum stress, and cellular senescence. Interestingly, the effects of activating PPARß/δ can preferentially target keratinocytes with genetic mutations associated with skin cancer. This review provides the history and current understanding of how PPARß/δ can be targeted for both nonmelanoma skin cancer and melanoma and postulates how future approaches that modulate PPARß/δ signaling may be developed for the prevention and treatment of these diseases.


Asunto(s)
PPAR delta/metabolismo , PPAR-beta/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Queratinocitos/metabolismo , Melanoma/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
18.
J Biol Chem ; 292(35): 14456-14472, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717009

RESUMEN

The transition from transcription initiation to elongation is a key regulatory step in gene expression, which requires RNA polymerase II (pol II) to escape promoter proximal pausing on chromatin. Although elongation factors promote pause release leading to transcription elongation, the role of epigenetic modifications during this critical transition step is poorly understood. Two histone marks on histone H3, lysine 4 trimethylation (H3K4me3) and lysine 9 acetylation (H3K9ac), co-localize on active gene promoters and are associated with active transcription. H3K4me3 can promote transcription initiation, yet the functional role of H3K9ac is much less understood. We hypothesized that H3K9ac may function downstream of transcription initiation by recruiting proteins important for the next step of transcription. Here, we describe a functional role for H3K9ac in promoting pol II pause release by directly recruiting the super elongation complex (SEC) to chromatin. H3K9ac serves as a substrate for direct binding of the SEC, as does acetylation of histone H4 lysine 5 to a lesser extent. Furthermore, lysine 9 on histone H3 is necessary for maximal pol II pause release through SEC action, and loss of H3K9ac increases the pol II pausing index on a subset of genes in HeLa cells. At select gene promoters, H3K9ac loss or SEC depletion reduces gene expression and increases paused pol II occupancy. We therefore propose that an ordered histone code can promote progression through the transcription cycle, providing new mechanistic insight indicating that SEC recruitment to certain acetylated histones on a subset of genes stimulates the subsequent release of paused pol II needed for transcription elongation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Lisina/metabolismo , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética , Acetilación , Sustitución de Aminoácidos , Animales , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigénesis Genética , Células HeLa , Histonas/antagonistas & inhibidores , Histonas/química , Histonas/genética , Humanos , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(44): E6068-77, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26487680

RESUMEN

Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation.


Asunto(s)
Glucosa/metabolismo , Homeostasis/fisiología , Proteínas Adaptadoras de la Señalización Shc/fisiología , Animales , Glucoquinasa/genética , Glucoquinasa/metabolismo , Ratones , Ratones Noqueados , Transcripción Genética
20.
Mol Carcinog ; 56(5): 1472-1483, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27996177

RESUMEN

Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-ß/δ, (PPARß/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARß/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARß/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARß/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARß/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARß/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARß/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients.


Asunto(s)
Neuroblastoma/patología , PPAR delta/metabolismo , PPAR-beta/metabolismo , Factores de Transcripción SOXB1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones Desnudos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , PPAR delta/genética , PPAR-beta/genética , Fosfohidrolasa PTEN/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA