Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 566(7743): 264-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30700906

RESUMEN

The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis and autophagy1. Its hyperactivation contributes to disease in numerous organs, including the heart1,2, although broad inhibition of mTORC1 risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 that acts through modulation of RHEB (Ras homologue enriched in brain). TSC2 constitutively inhibits mTORC1; however, this activity is modified by phosphorylation from multiple signalling kinases that in turn inhibits (AMPK and GSK-3ß) or stimulates (AKT, ERK and RSK-1) mTORC1 activity3-9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here we show that phosphorylation or gain- or loss-of-function mutations at either of two adjacent serine residues in TSC2 (S1365 and S1366 in mice; S1364 and S1365 in humans) can bidirectionally control mTORC1 activity stimulated by growth factors or haemodynamic stress, and consequently modulate cell growth and autophagy. However, basal mTORC1 activity remains unchanged. In the heart, or in isolated cardiomyocytes or fibroblasts, protein kinase G1 (PKG1) phosphorylates these TSC2 sites. PKG1 is a primary effector of nitric oxide and natriuretic peptide signalling, and protects against heart disease10-13. Suppression of hypertrophy and stimulation of autophagy in cardiomyocytes by PKG1 requires TSC2 phosphorylation. Homozygous knock-in mice that express a phosphorylation-silencing mutation in TSC2 (TSC2(S1365A)) develop worse heart disease and have higher mortality after sustained pressure overload of the heart, owing to mTORC1 hyperactivity that cannot be rescued by PKG1 stimulation. However, cardiac disease is reduced and survival of heterozygote Tsc2S1365A knock-in mice subjected to the same stress is improved by PKG1 activation or expression of a phosphorylation-mimicking mutation (TSC2(S1365E)). Resting mTORC1 activity is not altered in either knock-in model. Therefore, TSC2 phosphorylation is both required and sufficient for PKG1-mediated cardiac protection against pressure overload. The serine residues identified here provide a genetic tool for bidirectional regulation of the amplitude of stress-stimulated mTORC1 activity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cardiopatías/prevención & control , Cardiopatías/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/química , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Autofagia , Células Cultivadas , Progresión de la Enfermedad , Activación Enzimática , Everolimus/farmacología , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Cardiopatías/genética , Cardiopatías/patología , Humanos , Hipertrofia/tratamiento farmacológico , Hipertrofia/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Mutación , Miocitos Cardíacos/patología , Fosforilación , Fosfoserina/metabolismo , Presión , Ratas , Ratas Wistar , Serina/genética , Serina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
2.
Circ Res ; 127(4): 522-533, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32393148

RESUMEN

RATIONALE: Stimulated PKG1α (protein kinase G-1α) phosphorylates TSC2 (tuberous sclerosis complex 2) at serine 1365, potently suppressing mTORC1 (mechanistic [mammalian] target of rapamycin complex 1) activation by neurohormonal and hemodynamic stress. This reduces pathological hypertrophy and dysfunction and increases autophagy. PKG1α oxidation at cysteine-42 is also induced by these stressors, which blunts its cardioprotective effects. OBJECTIVE: We tested the dependence of mTORC1 activation on PKG1α C42 oxidation and its capacity to suppress such activation by soluble GC-1 (guanylyl cyclase 1) activation. METHODS AND RESULTS: Cardiomyocytes expressing wild-type (WT) PKG1α (PKG1αWT) or cysteine-42 to serine mutation redox-dead (PKG1αCS/CS) were exposed to ET-1 (endothelin 1). Cells expressing PKG1αWT exhibited substantial mTORC1 activation (p70 S6K [p70 S6 kinase], 4EBP1 [elF4E binding protein-1], and Ulk1 [Unc-51-like kinase 1] phosphorylation), reduced autophagy/autophagic flux, and abnormal protein aggregation; all were markedly reversed by PKG1αCS/CS expression. Mice with global knock-in of PKG1αCS/CS subjected to pressure overload (PO) also displayed markedly reduced mTORC1 activation, protein aggregation, hypertrophy, and ventricular dysfunction versus PO in PKG1αWT mice. Cardioprotection against PO was equalized between groups by co-treatment with the mTORC1 inhibitor everolimus. TSC2-S1365 phosphorylation increased in PKG1αCS/CS more than PKG1αWT myocardium following PO. TSC2S1365A/S1365A (TSC2 S1365 phospho-null, created by a serine to alanine mutation) knock-in mice lack TSC2 phosphorylation by PKG1α, and when genetically crossed with PKG1αCS/CS mice, protection against PO-induced mTORC1 activation, cardiodepression, and mortality in PKG1αCS/CS mice was lost. Direct stimulation of GC-1 (BAY-602770) offset disparate mTORC1 activation between PKG1αWT and PKG1αCS/CS after PO and blocked ET-1 stimulated mTORC1 in TSC2S1365A-expressing myocytes. CONCLUSIONS: Oxidation of PKG1α at C42 reduces its phosphorylation of TSC2, resulting in amplified PO-stimulated mTORC1 activity and associated hypertrophy, dysfunction, and depressed autophagy. This is ameliorated by direct GC-1 stimulation.


Asunto(s)
Cardiomegalia/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Guanilato Ciclasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Aorta , Autofagia/fisiología , Benzoatos/metabolismo , Compuestos de Bifenilo/metabolismo , Constricción Patológica , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Cisteína/metabolismo , Endotelina-1/farmacología , Activación Enzimática , Everolimus/farmacología , Técnicas de Sustitución del Gen , Hidrocarburos Fluorados/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Presión , Proteostasis , Ratas , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(20): 10156-10161, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028142

RESUMEN

Transient receptor potential canonical type 6 (TRPC6) is a nonselective receptor-operated cation channel that regulates reactive fibrosis and growth signaling. Increased TRPC6 activity from enhanced gene expression or gain-of-function mutations contribute to cardiac and/or renal disease. Despite evidence supporting a pathophysiological role, no orally bioavailable selective TRPC6 inhibitor has yet been developed and tested in vivo in disease models. Here, we report an orally bioavailable TRPC6 antagonist (BI 749327; IC50 13 nM against mouse TRPC6, t1/2 8.5-13.5 hours) with 85- and 42-fold selectivity over the most closely related channels, TRPC3 and TRPC7. TRPC6 calcium conductance results in the stimulation of nuclear factor of activated T cells (NFAT) that triggers pathological cardiac and renal fibrosis and disease. BI 749327 suppresses NFAT activation in HEK293T cells expressing wild-type or gain-of-function TRPC6 mutants (P112Q, M132T, R175Q, R895C, and R895L) and blocks associated signaling and expression of prohypertrophic genes in isolated myocytes. In vivo, BI 749327 (30 mg/kg/day, yielding unbound trough plasma concentration ∼180 nM) improves left heart function, reduces volume/mass ratio, and blunts expression of profibrotic genes and interstitial fibrosis in mice subjected to sustained pressure overload. Additionally, BI 749327 dose dependently reduces renal fibrosis and associated gene expression in mice with unilateral ureteral obstruction. These results provide in vivo evidence of therapeutic efficacy for a selective pharmacological TRPC6 inhibitor with oral bioavailability and suitable pharmacokinetics to ameliorate cardiac and renal stress-induced disease with fibrosis.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Nefroesclerosis/tratamiento farmacológico , Canal Catiónico TRPC6/antagonistas & inhibidores , Animales , Evaluación Preclínica de Medicamentos , Fibrosis , Células HEK293 , Corazón/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Ratones
4.
Nature ; 519(7544): 472-6, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25799991

RESUMEN

Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Cardiomegalia/enzimología , Cardiomegalia/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/deficiencia , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Animales , Estenosis de la Válvula Aórtica/complicaciones , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/enzimología , Miocardio/enzimología , Péptidos Natriuréticos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Presión , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Regulación hacia Arriba
5.
Circ Res ; 123(11): 1232-1243, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30571462

RESUMEN

RATIONALE: Protein S-nitros(yl)ation (SNO) has been implicated as an essential mediator of nitric oxide-dependent cardioprotection. Compared with males, female hearts exhibit higher baseline levels of protein SNO and associated with this, reduced susceptibility to myocardial ischemia-reperfusion injury. Female hearts also exhibit enhanced S-nitrosoglutathione reductase (GSNO-R) activity, which would typically favor decreased SNO levels as GSNO-R mediates SNO catabolism. OBJECTIVE: Because female hearts exhibit higher SNO levels, we hypothesized that GSNO-R is an essential component of sex-dependent cardioprotection in females. METHODS AND RESULTS: Male and female wild-type mouse hearts were subjected to ex vivo ischemia-reperfusion injury with or without GSNO-R inhibition (N6022). Control female hearts exhibited enhanced functional recovery and decreased infarct size versus control males. Interestingly, GSNO-R inhibition reversed this sex disparity, significantly reducing injury in male hearts, and exacerbating injury in females. Similar results were obtained with male and female GSNO-R-/- hearts using ex vivo and in vivo models of ischemia-reperfusion injury. Assessment of SNO levels using SNO-resin assisted capture revealed an increase in total SNO levels with GSNO-R inhibition in males, whereas total SNO levels remained unchanged in females. However, we found that although GSNO-R inhibition significantly increased SNO at the cardioprotective Cys39 residue of nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 3 in males, SNO-NADH dehydrogenase subunit 3 levels were surprisingly reduced in N6022-treated female hearts. Because GSNO-R also acts as a formaldehyde dehydrogenase, we examined postischemic formaldehyde levels and found that they were nearly 2-fold higher in N6022-treated female hearts compared with nontreated hearts. Importantly, the mitochondrial aldehyde dehydrogenase 2 activator, Alda-1, rescued the phenotype in GSNO-R-/- female hearts, significantly reducing infarct size. CONCLUSIONS: These striking findings point to GSNO-R as a critical sex-dependent mediator of myocardial protein SNO and formaldehyde levels and further suggest that different therapeutic strategies may be required to combat ischemic heart disease in males and females.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Alcohol Deshidrogenasa/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Estrés Oxidativo , Pirroles/farmacología , Pirroles/uso terapéutico , Factores Sexuales
6.
Proc Natl Acad Sci U S A ; 114(50): E10763-E10771, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29187535

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked disorder with dystrophin loss that results in skeletal and cardiac muscle weakening and early death. Loss of the dystrophin-sarcoglycan complex delocalizes nitric oxide synthase (NOS) to alter its signaling, and augments mechanosensitive intracellular Ca2+ influx. The latter has been coupled to hyperactivation of the nonselective cation channel, transient receptor potential canonical channel 6 (Trpc6), in isolated myocytes. As Ca2+ also activates NOS, we hypothesized that Trpc6 would help to mediate nitric oxide (NO) dysregulation and that this would be manifest in increased myocardial S-nitrosylation, a posttranslational modification increasingly implicated in neurodegenerative, inflammatory, and muscle disease. Using a recently developed dual-labeling proteomic strategy, we identified 1,276 S-nitrosylated cysteine residues [S-nitrosothiol (SNO)] on 491 proteins in resting hearts from a mouse model of DMD (dmdmdx:utrn+/-). These largely consisted of mitochondrial proteins, metabolic regulators, and sarcomeric proteins, with 80% of them also modified in wild type (WT). S-nitrosylation levels, however, were increased in DMD. Genetic deletion of Trpc6 in this model (dmdmdx:utrn+/-:trpc6-/-) reversed ∼70% of these changes. Trpc6 deletion also ameliorated left ventricular dilation, improved cardiac function, and tended to reduce fibrosis. Furthermore, under catecholamine stimulation, which also increases NO synthesis and intracellular Ca2+ along with cardiac workload, the hypernitrosylated state remained as it did at baseline. However, the impact of Trpc6 deletion on the SNO proteome became less marked. These findings reveal a role for Trpc6-mediated hypernitrosylation in dmdmdx:utrn+/- mice and support accumulating evidence that implicates nitrosative stress in cardiac and muscle disease.


Asunto(s)
Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Señalización del Calcio , Cisteína/metabolismo , Modelos Animales de Enfermedad , Epinefrina/farmacología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Nitrosación , S-Nitrosotioles/metabolismo , Simpatomiméticos/farmacología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Remodelación Ventricular
7.
J Mol Cell Cardiol ; 130: 49-58, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30910669

RESUMEN

Adenosine exerts numerous protective actions in the heart, including attenuation of cardiac hypertrophy. Adenosine kinase (ADK) converts adenosine to adenosine monophosphate (AMP) and is the major route of myocardial adenosine metabolism, however, the impact of ADK activity on cardiac structure and function is unknown. To examine the role of ADK in cardiac homeostasis and adaptation to stress, conditional cardiomyocyte specific ADK knockout mice (cADK-/-) were produced using the MerCreMer-lox-P system. Within 4 weeks of ADK disruption, cADK-/- mice developed spontaneous hypertrophy and increased ß-Myosin Heavy Chain expression without observable LV dysfunction. In response to 6 weeks moderate left ventricular pressure overload (transverse aortic constriction;TAC), wild type mice (WT) exhibited ~60% increase in ventricular ADK expression and developed LV hypertrophy with preserved LV function. In contrast, cADK-/- mice exhibited significantly greater LV hypertrophy and cardiac stress marker expression (atrial natrurietic peptide and ß-Myosin Heavy Chain), LV dilation, reduced LV ejection fraction and increased pulmonary congestion. ADK disruption did not decrease protein methylation, inhibit AMPK, or worsen fibrosis, but was associated with persistently elevated mTORC1 and p44/42 ERK MAP kinase signaling and a striking increase in microtubule (MT) stabilization/detyrosination. In neonatal cardiomyocytes exposed to hypertrophic stress, 2-chloroadenosine (CADO) or adenosine treatment suppressed MT detyrosination, which was reversed by ADK inhibition with iodotubercidin or ABT-702. Conversely, adenoviral over-expression of ADK augmented CADO destabilization of MTs and potentiated CADO attenuation of cardiomyocyte hypertrophy. Together, these findings indicate a novel adenosine receptor-independent role for ADK-mediated adenosine metabolism in cardiomyocyte microtubule dynamics and protection against maladaptive hypertrophy.


Asunto(s)
Adenosina Quinasa/metabolismo , Cardiomegalia/metabolismo , Sistema de Señalización de MAP Quinasas , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Quinasa/genética , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Ratones , Ratones Noqueados , Microtúbulos/genética , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Volumen Sistólico/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
8.
J Mol Cell Cardiol ; 129: 236-246, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30862451

RESUMEN

Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood. Therefore, we aimed to determine if abrogation of cMyBP-C proteolysis in association with calpain, a calcium-activated protease, confers cardioprotection during I/R injury. Calpain is activated in both human ischemic heart samples and ischemic mouse myocardium where cMyBP-C is dephosphorylated and undergoes proteolysis. Moreover, cMyBP-C is a substrate for calpain proteolysis and cleaved by calpain at residues 272-TSLAGAGRR-280, a domain termed as the calpain-target site (CTS). Cardiac-specific transgenic (Tg) mice in which the CTS motif was ablated were bred into a cMyBP-C null background. These Tg mice were conclusively shown to possess a normal basal structure and function by analysis of histology, electron microscopy, immunofluorescence microscopy, Q-space MRI of tissue architecture, echocardiography, and hemodynamics. However, the genetic ablation of the CTS motif conferred resistance to calpain-mediated proteolysis of cMyBP-C. Following I/R injury, the loss of the CTS reduced infarct size compared to non-transgenic controls. Collectively, these findings demonstrate the physiological significance of calpain-targeted cMyBP-C proteolysis and provide a rationale for studying inhibition of calpain-mediated proteolysis of cMyBP-C as a therapeutic target for cardioprotection.


Asunto(s)
Calpaína/metabolismo , Cardiotónicos/metabolismo , Proteínas Portadoras/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Animales , Femenino , Pruebas de Función Cardíaca , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Fosforilación , Proteolisis
9.
Circulation ; 138(18): 1974-1987, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30030415

RESUMEN

BACKGROUND: Phosphodiesterase type-1 (PDE1) hydrolyzes cAMP and cGMP and is constitutively expressed in the heart, although cardiac effects from its acute inhibition in vivo are largely unknown. Existing data are limited to rodents expressing mostly the cGMP-favoring PDE1A isoform. Human heart predominantly expresses PDE1C with balanced selectivity for cAMP and cGMP. Here, we determined the acute effects of PDE1 inhibition in PDE1C-expressing mammals, dogs, and rabbits, in normal and failing hearts, and explored its regulatory pathways. METHODS: Conscious dogs chronically instrumented for pressure-volume relations were studied before and after tachypacing-induced heart failure (HF). A selective PDE1 inhibitor (ITI-214) was administered orally or intravenously±dobutamine. Pressure-volume analysis in anesthetized rabbits tested the role of ß-adrenergic and adenosine receptor signaling on ITI-214 effects. Sarcomere and calcium dynamics were studied in rabbit left ventricular myocytes. RESULTS: In normal and HF dogs, ITI-214 increased load-independent contractility, improved relaxation, and reduced systemic arterial resistance, raising cardiac output without altering systolic blood pressure. Heart rate increased, but less so in HF dogs. ITI-214 effects were additive to ß-adrenergic receptor agonism (dobutamine). Dobutamine but not ITI-214 increased plasma cAMP. ITI-214 induced similar cardiovascular effects in rabbits, whereas mice displayed only mild vasodilation and no contractility effects. In rabbits, ß-adrenergic receptor blockade (esmolol) prevented ITI-214-mediated chronotropy, but inotropy and vasodilation remained unchanged. By contrast, adenosine A2B-receptor blockade (MRS-1754) suppressed ITI-214 cardiovascular effects. Adding fixed-rate atrial pacing did not alter the findings. ITI-214 alone did not affect sarcomere or whole-cell calcium dynamics, whereas ß-adrenergic receptor agonism (isoproterenol) or PDE3 inhibition (cilostamide) increased both. Unlike cilostamide, which further enhanced shortening and peak calcium when combined with isoproterenol, ITI-214 had no impact on these responses. Both PDE1 and PDE3 inhibitors increased shortening and accelerated calcium decay when combined with forskolin, yet only cilostamide increased calcium transients. CONCLUSIONS: PDE1 inhibition by ITI-214 in vivo confers acute inotropic, lusitropic, and arterial vasodilatory effects in PDE1C-expressing mammals with and without HF. The effects appear related to cAMP signaling that is different from that provided via ß-adrenergic receptors or PDE3 modulation. ITI-214, which has completed phase I trials, may provide a novel therapy for HF.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Miocitos Cardíacos/fisiología , Animales , Calcio/metabolismo , AMP Cíclico/sangre , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Dobutamina/uso terapéutico , Perros , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Frecuencia Cardíaca/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Conejos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Cell Physiol Biochem ; 46(1): 9-22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566363

RESUMEN

BACKGROUND/AIMS: Increased endoplasmic reticulum (ER) stress contributes to development of cardiorenal syndrome (CRS), and Silent Information Regulator 1 (SIRT1), a class III histone deacetylase, may have protective effects on heart and renal disease, by reducing ER stress. We aimed to determine if SIRT1 alleviates CRS through ER stress reduction. METHODS: Wild type mice (n=37), mice with cardiac-specific SIRT1 knockout (n=29), or overexpression (n=29), and corresponding controls, were randomized into four groups: sham MI (myocardial infarction) +sham STNx (subtotal nephrectomy); MI+sham STNx; sham MI+STNx; and MI+STNx. To establish the CRS model, subtotal nephrectomy (5/6 nephrectomy, SNTx) and myocardial infarction (MI) (induced by ligation of the left anterior descending (LAD) coronary artery) were performed successively to establish CRS model. At week 8, the mice were sacrificed after sequential echocardiographic and hemodynamic studies, and then pathology and Western-blot analysis were performed. RESULTS: Neither MI nor STNx alone significantly influenced the other healthy organ. However, in MI groups, STNx led to more severe cardiac structural and functional deterioration, with increased remodeling, increased BNP levels, and decreased EF, Max +dp/dt, and Max -dp/dt values than in sham MI +STNx groups. Conversely, in STNx groups, MI led to renal structural and functional deterioration, with more severe morphologic changes, augmented desmin and decreased nephrin expression, and increased BUN, SCr and UCAR levels. In MI+STNx groups, SIRT1 knockout led to more severe cardiac structural and functional deterioration, with higher Masson-staining score and BNP levels, and lower EF, FS, Max +dp/dt, and Max -dp/dt values; while SIRT1 overexpression had the opposite attenuating effects. In kidney, SIRT1 knockout resulted in greater structural and functional deterioration, as evidenced by more severe morphologic changes, higher levels of UACR, BUN and SCr, and increased desmin and TGF-ß expression, while SIRT1 overexpression resulted in less severe morphologic changes and increased nephrin expression without significant influence on BUN or SCr levels. The SIRT1 knockout but not overexpression resulted in increased myocardial expression of CHOP and GRP78. Cardiac-specific SIRT1 knockout or overexpression resulted in increased or decreased renal expression of CHOP, Bax, and p53 respectively. CONCLUSIONS: Myocardial SIRT1 activation appears protective to both heart and kidney in CRS models, probably through modulation of ER stress.


Asunto(s)
Síndrome Cardiorrenal/patología , Estrés del Retículo Endoplásmico/fisiología , Corazón/fisiopatología , Riñón/patología , Sirtuina 1/metabolismo , Animales , Síndrome Cardiorrenal/etiología , Síndrome Cardiorrenal/metabolismo , Creatinina/sangre , Desmina/metabolismo , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Riñón/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Miocardio/patología , Nefrectomía , Sirtuina 1/deficiencia , Sirtuina 1/genética , Factor de Transcripción CHOP/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(6): 1880-5, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25583515

RESUMEN

BDNF and its associated tropomyosin-related kinase receptor B (TrkB) nurture vessels and nerves serving the heart. However, the direct effect of BDNF/TrkB signaling on the myocardium is poorly understood. Here we report that cardiac-specific TrkB knockout mice (TrkB(-/-)) display impaired cardiac contraction and relaxation, showing that BDNF/TrkB signaling acts constitutively to sustain in vivo myocardial performance. BDNF enhances normal cardiomyocyte Ca(2+) cycling, contractility, and relaxation via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Conversely, failing myocytes, which have increased truncated TrkB lacking tyrosine kinase activity and chronically activated CaMKII, are insensitive to BDNF. Thus, BDNF/TrkB signaling represents a previously unidentified pathway by which the peripheral nervous system directly and tonically influences myocardial function in parallel with ß-adrenergic control. Deficits in this system are likely additional contributors to acute and chronic cardiac dysfunction.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Señalización del Calcio/fisiología , Diástole/fisiología , Contracción Miocárdica/fisiología , Receptor trkB/metabolismo , Análisis de Varianza , Animales , Calcio/metabolismo , Hemodinámica , Inmunohistoquímica , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp
12.
Vasc Med ; 22(3): 179-188, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28145161

RESUMEN

Pharmacologic inhibition of nitric oxide production inhibits growth of coronary collateral vessels. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme that degrades asymmetric dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthase. Here we examined regulation of the ADMA-DDAH1 pathway in a canine model of recurrent myocardial ischemia during the time when coronary collateral growth is known to occur. Under basal conditions, DDAH1 expression was non-uniform across the left ventricular (LV) wall, with expression strongest in the subepicardium. In response to ischemia, DDAH1 expression was up-regulated in the midmyocardium of the ischemic zone, and this was associated with a significant reduction in myocardial interstitial fluid (MIF) ADMA. The decrease in MIF ADMA during ischemia was likely due to increased DDAH1 because myocardial protein arginine N-methyl transferase 1 (PRMT1) and the methylated arginine protein content (the source of ADMA) were unchanged or increased, respectively, at this time. The inflammatory mediators interleukin (IL-1ß) and tumor necrosis factor (TNF-α) were also elevated in the midmyocardium where DDAH1 expression was increased. Both of these factors significantly up-regulated DDAH1 expression in cultured human coronary artery endothelial cells. Taken together, these results suggest that inflammatory factors expressed in response to myocardial ischemia contributed to up-regulation of DDAH1, which was responsible for the decrease in MIF ADMA.


Asunto(s)
Amidohidrolasas/metabolismo , Vasos Coronarios/enzimología , Isquemia Miocárdica/enzimología , Miocardio/enzimología , Neovascularización Fisiológica , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Hipoxia de la Célula , Células Cultivadas , Circulación Colateral , Circulación Coronaria , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Perros , Células Endoteliales/enzimología , Humanos , Interleucina-1beta/metabolismo , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Cardiovasc Res ; 119(2): 571-586, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35704040

RESUMEN

AIMS: Brain-derived neurotrophic factor (BDNF) is markedly decreased in heart failure patients. Both BDNF and its receptor, tropomyosin-related kinase receptor (TrkB), are expressed in cardiomyocytes; however, the role of myocardial BDNF signalling in cardiac pathophysiology is poorly understood. Here, we investigated the role of BDNF/TrkB signalling in cardiac stress response to exercise and pathological stress. METHODS AND RESULTS: We found that myocardial BDNF expression was increased in mice with swimming exercise but decreased in a mouse heart failure model and human failing hearts. Cardiac-specific TrkB knockout (cTrkB KO) mice displayed a blunted adaptive cardiac response to exercise, with attenuated upregulation of transcription factor networks controlling mitochondrial biogenesis/metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). In response to pathological stress (transaortic constriction, TAC), cTrkB KO mice showed an exacerbated heart failure progression. The downregulation of PGC-1α in cTrkB KO mice exposed to exercise or TAC resulted in decreased cardiac energetics. We further unravelled that BDNF induces PGC-1α upregulation and bioenergetics through a novel signalling pathway, the pleiotropic transcription factor Yin Yang 1. CONCLUSION: Taken together, our findings suggest that myocardial BDNF plays a critical role in regulating cellular energetics in the cardiac stress response.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Animales , Humanos , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metabolismo Energético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/metabolismo
14.
FEBS Lett ; 596(1): 17-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34778969

RESUMEN

Phosphodiesterase 5 inhibition (PDE5i) activates cGMP-dependent protein kinase (PKG) and ameliorates heart failure; however, its impact on cardiac mitochondrial regulation has not been fully determined. Here, we investigated the role of the mitochondrial regulator peroxisome proliferator-activated receptor γ co-activator-1α (PGC1α) in the PDE5i-conferred cardioprotection, utilizing PGC1α null mice. In PGC1α+/+ hearts exposed to 7 weeks of pressure overload by transverse aortic constriction, chronic treatment with the PDE5 inhibitor sildenafil improved cardiac function and remodeling, with improved mitochondrial respiration and upregulation of PGC1α mRNA in the myocardium. By contrast, PDE5i-elicited benefits were abrogated in PGC1α-/- hearts. In cultured cardiomyocytes, PKG overexpression induced PGC1α, while inhibition of the transcription factor CREB abrogated the PGC1α induction. Together, these results suggest that the PKG-PGC1α axis plays a pivotal role in the therapeutic efficacy of PDE5i in heart failure.


Asunto(s)
Inhibidores de Fosfodiesterasa 5
15.
Circulation ; 121(13): 1474-83, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308615

RESUMEN

BACKGROUND: Phosphodiesterase type 5 (PDE5) inhibition has been shown to exert profound beneficial effects in the failing heart, suggesting a significant role for PDE5 in the development of congestive heart failure (CHF). The purpose of this study is to test the hypothesis that oxidative stress causes increased PDE5 expression in cardiac myocytes and that increased PDE5 contributes to the development of CHF. METHODS AND RESULTS: Myocardial PDE5 expression and cellular distribution were determined in left ventricular samples from patients with end-stage CHF and normal donors and from mice after transverse aortic constriction (TAC)-induced CHF. Compared with donor human hearts, myocardial PDE5 protein was increased approximately equal 4.5-fold in CHF samples, and the increase of myocardial PDE5 expression was significantly correlated with myocardial oxidative stress markers 3'-nitrotyrosine or 4-hydroxynonenal expression (P<0.05). Histological examination demonstrated that PDE5 was mainly expressed in vascular smooth muscle in normal donor hearts, but its expression was increased in both cardiac myocytes and vascular smooth muscle of CHF hearts. Myocardial PDE5 protein content and activity also increased in mice after TAC-induced CHF (P<0.05). When the superoxide dismutase (SOD) mimetic M40401 was administered to attenuate oxidative stress, the increased PDE5 protein and activity caused by TAC was blunted, and the hearts were protected against left ventricular hypertrophy and CHF. Conversely, increased myocardial oxidative stress in superoxide dismutase 3 knockout mice caused a greater increase of PDE5 expression and CHF after TAC. In addition, administration of sildenafil to inhibit PDE5 attenuated TAC-induced myocardial oxidative stress, PDE5 expression, and CHF. CONCLUSIONS: Myocardial oxidative stress increases PDE5 expression in the failing heart. Reducing oxidative stress by treatment with M40401 attenuated cardiomyocyte PDE5 expression. This and selective inhibition of PDE5 protected the heart against pressure overload-induced left ventricular hypertrophy and CHF.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/enzimología , Estrés Oxidativo/fisiología , Animales , Antioxidantes/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5 , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Purinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Citrato de Sildenafil , Sulfonas/farmacología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
16.
Circulation ; 120(22): 2222-9, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19917889

RESUMEN

BACKGROUND: Asymmetrical methylarginines inhibit NO synthase activity and thereby decrease NO production. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) degrades asymmetrical methylarginines. We previously demonstrated that in the heart DDAH1 is predominantly expressed in vascular endothelial cells. Because an earlier study showed that mice with global DDAH1 deficiency experienced embryonic lethality, we speculated that a mouse strain with selective vascular endothelial DDAH1 deficiency (endo-DDAH1(-/-)) would largely abolish tissue DDAH1 expression in many tissues but possibly avoid embryonic lethality. METHODS AND RESULTS: By using the LoxP/Cre approach, we generated the endo-DDAH1(-/-) mice. The endo-DDAH1(-/-) mice had no apparent defect in growth or development compared with wild-type littermates. DDAH1 expression was greatly reduced in kidney, lung, brain, and liver, indicating that in these organs DDAH1 is distributed mainly in vascular endothelial cells. The endo-DDAH1(-/-) mice showed a significant increase of asymmetric dimethylarginine concentration in plasma (1.41 micromol/L in the endo-DDAH1(-/-) versus 0.69 micromol/L in the control mice), kidney, lung, and liver, which was associated with significantly increased systolic blood pressure (132 mm Hg versus 113 mm Hg in wild-type). The endo-DDAH1(-/-) mice also exhibited significantly attenuated acetylcholine-induced NO production and vessel relaxation in isolated aortic rings. CONCLUSIONS: Our study demonstrates that DDAH1 is highly expressed in vascular endothelium and that endothelial DDAH1 plays an important role in regulating blood pressure. In the context that asymmetric methylarginines are broadly produced by many type of cells, the strong DDAH1 expression in vascular endothelium demonstrates for the first time that vascular endothelium can be an important site to actively dispose of toxic biochemical molecules produced by other types of cells.


Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Arginina/análogos & derivados , Endotelio Vascular/enzimología , Hipertensión/fisiopatología , Acetilcolina/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Arginina/metabolismo , Encéfalo/fisiología , Colinérgicos/farmacología , Femenino , Hipertensión/metabolismo , Riñón/fisiología , Hígado/fisiología , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/fisiología , Óxido Nítrico/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Función Ventricular Izquierda/fisiología
17.
Circulation ; 118(17): 1713-21, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18838560

RESUMEN

BACKGROUND: Endogenous adenosine can protect the overloaded heart against the development of hypertrophy and heart failure, but the contribution of A(1) receptors (A(1)R) and A(3) receptors (A(3)R) is not known. METHODS AND RESULTS: To test the hypothesis that A(1)R and A(3)R can protect the heart against systolic overload, we exposed A(3)R gene-deficient (A(3)R knockout [KO]) mice and A(1)R KO mice to transverse aortic constriction (TAC). Contrary to our hypothesis, A(3)R KO attenuated 5-week TAC-induced left ventricular hypertrophy (ratio of ventricular mass/body weight increased to 7.6+/-0.3 mg/g in wild-type mice compared with 6.3+/-0.4 mg/g in KO mice), fibrosis, and dysfunction (left ventricular ejection fraction decreased to 43+/-2.5% and 55+/-4.2% in wild-type and KO mice, respectively). A(3)R KO also attenuated the TAC-induced increases of myocardial atrial natriuretic peptide and the oxidative stress markers 3'-nitrotyrosine and 4-hydroxynonenal. In contrast, A(1)R KO increased TAC-induced mortality but did not alter ventricular hypertrophy or dysfunction compared with wild-type mice. In mice in which extracellular adenosine production was impaired by CD73 KO, TAC caused greater hypertrophy and dysfunction and increased myocardial 3'-nitrotyrosine. In neonatal rat cardiomyocytes induced to hypertrophy with phenylephrine, the adenosine analogue 2-chloroadenosine reduced cell area, protein synthesis, atrial natriuretic peptide, and 3'-nitrotyrosine. Antagonism of A(3)R significantly potentiated the antihypertrophic effects of 2-chloroadenosine. CONCLUSIONS: Adenosine exerts protective effects on the overloaded heart, but the A(3)R acts counter to the protective effect of adenosine. The data suggest that selective attenuation of A(3)R activity might be a novel approach to treat pressure overload-induced left ventricular hypertrophy and dysfunction.


Asunto(s)
Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Receptor de Adenosina A3/deficiencia , Presión Ventricular/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Fibrosis , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A3/genética , Receptor de Adenosina A3/fisiología , Función Ventricular Izquierda/fisiología , Presión Ventricular/genética
18.
Am J Physiol Heart Circ Physiol ; 297(2): H523-32, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19525375

RESUMEN

There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.


Asunto(s)
Adenosina/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Colchicina/farmacología , Microtúbulos/metabolismo , Moduladores de Tubulina/farmacología , 2-Cloroadenosina/metabolismo , 2-Cloroadenosina/farmacología , 5'-Nucleotidasa/genética , Adenosina/farmacología , Animales , Cardiomegalia/patología , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microtúbulos/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Tubulina (Proteína)/metabolismo
19.
Circ Res ; 100(7): 1089-98, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17363700

RESUMEN

Inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes of patients and experimental animals with congestive heart failure (CHF). Here we show that iNOS expression plays a role in pressure overload-induced myocardial chamber dilation and hypertrophy. In wild-type mice, chronic transverse aortic constriction (TAC) resulted in myocardial iNOS expression, cardiac hypertrophy, ventricular dilation and dysfunction, and fibrosis, whereas iNOS-deficient mice displayed much less hypertrophy, dilation, fibrosis, and dysfunction. Consistent with these findings, TAC resulted in marked increases of myocardial atrial natriuretic peptide 4-hydroxy-2-nonenal (a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) in wild-type mice but not in iNOS-deficient mice. In response to TAC, myocardial endothelial NO synthase and iNOS was expressed as both monomer and dimer in wild-type mice, and this was associated with increased reactive oxygen species production, suggesting that iNOS monomer was a source for the increased oxidative stress. Moreover, systolic overload-induced Akt, mammalian target of rapamycin, and ribosomal protein S6 activation was significantly attenuated in iNOS-deficient mice. Furthermore, selective iNOS inhibition with 1400W (6 mg/kg per hour) significantly attenuated TAC induced myocardial hypertrophy and pulmonary congestion. These data implicate iNOS in the maladaptative response to systolic overload and suggest that selective iNOS inhibition or attenuation of iNOS monomer content might be effective for treatment of systolic overload-induced cardiac dysfunction.


Asunto(s)
Cardiomegalia/prevención & control , Insuficiencia Cardíaca/prevención & control , Hipertensión/enzimología , Miocardio/enzimología , Óxido Nítrico Sintasa de Tipo II/deficiencia , Amidinas/farmacología , Animales , Enfermedades de la Aorta/complicaciones , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Factor Natriurético Atrial/metabolismo , Bencilaminas/farmacología , Cardiomegalia/etiología , Enfermedad Crónica , Inhibidores Enzimáticos/farmacología , Fibrosis , Insuficiencia Cardíaca/etiología , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Miocardio/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína S6 Ribosómica/metabolismo , Sístole , Serina-Treonina Quinasas TOR , Vasoconstricción
20.
Circ Heart Fail ; 12(2): e005655, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30764638

RESUMEN

BACKGROUND: The mouse is the most widely used mammal in experimental biology. Although many clinically relevant in vivo cardiac stressors are used, one that has eluded translation is long-term cardiac pacing. Here, we present the first method to chronically simulate and simultaneously record cardiac electrical activity in conscious mobile mice. We then apply it to study right ventricular pacing induced electromechanical dyssynchrony and its reversal (resynchronization). METHODS AND RESULTS: The method includes a custom implantable bipolar stimulation and recording lead and flexible external conduit and electrical micro-commutator linked to a pulse generator/recorder. This achieved continuous pacing for at least 1 month in 77% of implants. Mice were then subjected to cardiac ischemia/reperfusion injury to depress heart function, followed by 4 weeks pacing at the right ventricle (dyssynchrony), right atrium (synchrony), or for 2 weeks right ventricle and then 2 weeks normal sinus (resynchronization). Right ventricular pacing-induced dyssynchrony substantially reduced heart and myocyte function compared with the other groups, increased gene expression heterogeneity (>10 fold) comparing septum to lateral walls, and enhanced growth and metabolic kinase activity in the late-contracting lateral wall. This was ameliorated by restoring contractile synchronization. CONCLUSIONS: The new method to chronically pace conscious mice yields stable atrial and ventricular capture and a means to dissect basic mechanisms of electromechanical physiology and therapy. The data on dyssynchrony and resynchronization in ischemia/reperfusion hearts is the most comprehensive to date in ischemic heart disease, and its similarities to nonischemic canine results support the translational utility of the mouse.


Asunto(s)
Función del Atrio Derecho , Estimulación Cardíaca Artificial , Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca/etiología , Daño por Reperfusión Miocárdica/complicaciones , Función Ventricular Derecha , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Frecuencia Cardíaca , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Marcapaso Artificial , Proteínas Quinasas/metabolismo , Recuperación de la Función , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA