Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.036
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013470

RESUMEN

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.

2.
Cell ; 184(5): 1133-1134, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667365

RESUMEN

The de novo domestication has the potential to rapidly capitalize on desirable traits of wild plants. In this issue of Cell, Yu et al. report a route of de novo domestication of an allotetraploid rice, heralding the creation of a novel staple food crop to support global food security.


Asunto(s)
Domesticación , Oryza , Productos Agrícolas/genética , Edición Génica , Oryza/genética
3.
Cell ; 167(2): 313-324, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716505

RESUMEN

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Productos Agrícolas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/fisiología , Proteínas Quinasas Activadas por AMP/genética , Cloroplastos/enzimología , Respuesta al Choque por Frío , Productos Agrícolas/enzimología , Productos Agrícolas/genética , Sequías , Estrés del Retículo Endoplásmico , Metabolismo Energético , Abastecimiento de Alimentos , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Mitocondrias/enzimología , Presión Osmótica , Peroxisomas/enzimología , Proteínas Serina-Treonina Quinasas/genética , Salinidad , Transducción de Señal , Estrés Fisiológico/genética
4.
Nat Rev Mol Cell Biol ; 19(8): 489-506, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29784956

RESUMEN

DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Animales , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Humanos , Proteínas Nucleares/metabolismo , Plantas/genética
5.
Nat Rev Genet ; 23(2): 104-119, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34561623

RESUMEN

Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.


Asunto(s)
Productos Agrícolas/genética , Sequías , Ecosistema , Plantas/genética , Salinidad , Estrés Fisiológico/genética , Temperatura , Atmósfera/química , Dióxido de Carbono/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxígeno/metabolismo , Plantas/metabolismo , Suelo/química
6.
Genes Dev ; 34(1-2): 53-71, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31857346

RESUMEN

Hippo signaling controls organ size and tumor progression through a conserved pathway leading to nuclear translocation of the transcriptional effector Yki/Yap/Taz. Most of our understanding of Hippo signaling pertains to its cytoplasmic regulation, but how the pathway is controlled in the nucleus remains poorly understood. Here we uncover an evolutionarily conserved mechanism by which CDK7 promotes Yki/Yap/Taz stabilization in the nucleus to sustain Hippo pathway outputs. We found that a modular E3 ubiquitin ligase complex CRL4DCAF12 binds and targets Yki/Yap/Taz for ubiquitination and degradation, whereas CDK7 phosphorylates Yki/Yap/Taz at S169/S128/S90 to inhibit CRL4DCAF12 recruitment, leading to Yki/Yap/Taz stabilization. As a consequence, inactivation of CDK7 reduced organ size and inhibited tumor growth, which could be reversed by restoring Yki/Yap activity. Our study identifies an unanticipated layer of Hippo pathway regulation, defines a novel mechanism by which CDK7 regulates tissue growth, and implies CDK7 as a drug target for Yap/Taz-driven cancer.


Asunto(s)
Carcinogénesis/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Quinasas Ciclina-Dependientes/genética , Drosophila melanogaster/genética , Activación Enzimática , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/fisiopatología , Ratones , Tamaño de los Órganos/genética , Fenilendiaminas/farmacología , Proteolisis , Pirimidinas/farmacología , Proteínas Señalizadoras YAP , Quinasa Activadora de Quinasas Ciclina-Dependientes
7.
EMBO J ; 42(4): e112184, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36588499

RESUMEN

Hippo signaling restricts tumor growth by inhibiting the oncogenic potential of YAP/TAZ-TEAD transcriptional complex. Here, we uncover a context-dependent tumor suppressor function of YAP in androgen receptor (AR) positive prostate cancer (PCa) and show that YAP impedes AR+ PCa growth by antagonizing TEAD-mediated AR signaling. TEAD forms a complex with AR to enhance its promoter/enhancer occupancy and transcriptional activity. YAP and AR compete for TEAD binding and consequently, elevated YAP in the nucleus disrupts AR-TEAD interaction and prevents TEAD from promoting AR signaling. Pharmacological inhibition of MST1/2 or LATS1/2, or transgenic activation of YAP suppressed the growth of PCa expressing therapy resistant AR splicing variants. Our study uncovers an unanticipated crosstalk between Hippo and AR signaling pathways, reveals an antagonistic relationship between YAP and TEAD in AR+ PCa, and suggests that targeting the Hippo signaling pathway may provide a therapeutical opportunity to treat PCa driven by therapy resistant AR variants.


Asunto(s)
Neoplasias de la Próstata , Factores de Transcripción , Masculino , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Transducción de Señal , Neoplasias de la Próstata/genética
8.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768356

RESUMEN

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Desmetilación del ADN , Metilación de ADN , Epigénesis Genética , Mutación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas Nucleares
9.
Proc Natl Acad Sci U S A ; 121(3): e2308812120, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190540

RESUMEN

Aging in an individual refers to the temporal change, mostly decline, in the body's ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer-based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.


Asunto(s)
Envejecimiento , Suministros de Energía Eléctrica , Humanos , Cara , Biomarcadores , Enfermedad Crónica
10.
Plant Cell ; 35(1): 201-217, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36149287

RESUMEN

Salt stress simultaneously causes ionic toxicity, osmotic stress, and oxidative stress, which directly impact plant growth and development. Plants have developed numerous strategies to adapt to saline environments. Whereas some of these strategies have been investigated and exploited for crop improvement, much remains to be understood, including how salt stress is perceived by plants and how plants coordinate effective responses to the stress. It is, however, clear that the plant cell wall is the first contact point between external salt and the plant. In this context, significant advances in our understanding of halotropism, cell wall synthesis, and integrity surveillance, as well as salt-related cytoskeletal rearrangements, have been achieved. Indeed, molecular mechanisms underpinning some of these processes have recently been elucidated. In this review, we aim to provide insights into how plants respond and adapt to salt stress, with a special focus on primary cell wall biology in the model plant Arabidopsis thaliana.


Asunto(s)
Pared Celular , Estrés Salino , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Estrés Salino/fisiología
11.
Mol Cell ; 69(1): 100-112.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290610

RESUMEN

As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Estrés Fisiológico
12.
Mol Cell Proteomics ; 23(8): 100804, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901673

RESUMEN

Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.

13.
Plant Physiol ; 195(3): 2094-2110, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588029

RESUMEN

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.


Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Plumbaginaceae , Citocininas/metabolismo , Citocininas/farmacología , Plumbaginaceae/genética , Plumbaginaceae/crecimiento & desarrollo , Plumbaginaceae/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
14.
Plant Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888999

RESUMEN

Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3 and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinate different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear. Here, in addition to modulating histone deacetylation, we found that SANT1/2/3/4 proteins acted like HDA6 or HDA9 in regulating the removal of histone Khib in Arabidopsis (Arabidopsis thaliana). Histone H3 lysine acetylation (H3KAc) and histone Khib were coordinated by SANT1/2/3/4 to regulate gene expression, with H3KAc playing a predominant role and Khib acting complementarily to H3KAc. SANT1/2/3/4 mutation significantly increased the expression of heat-inducible genes with concurrent change of H3KAc levels under normal and heat stress conditions, resulting in enhanced thermotolerance. This study revealed the critical roles of Harbinger transposon-derived SANT domain-containing proteins in transcriptional regulation by coordinating different types of histone PTMs and in the regulation of plant thermotolerance by mediating histone acetylation modification.

15.
Plant Cell ; 34(5): 2001-2018, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35099557

RESUMEN

Flowering is a critical agricultural trait that substantially affects tomato fruit yield. Although drought stress influences flowering time, the molecular mechanism underlying drought-regulated flowering in tomato remains elusive. In this study, we demonstrated that loss of function of tomato OPEN STOMATA 1 (SlOST1), a protein kinase essential for abscisic acid (ABA) signaling and abiotic stress responses, lowers the tolerance of tomato plants to drought stress. slost1 mutants also exhibited a late flowering phenotype under both normal and drought stress conditions. We also established that SlOST1 directly interacts with and phosphorylates the NAC (NAM, ATAF and CUC)-type transcription factor VASCULAR PLANT ONE-ZINC FINGER 1 (SlVOZ1), at residue serine 67, thereby enhancing its stability and nuclear translocation in an ABA-dependent manner. Moreover, we uncovered several SlVOZ1 binding motifs from DNA affinity purification sequencing analyses and revealed that SlVOZ1 can directly bind to the promoter of the major flowering-integrator gene SINGLE FLOWER TRUSS to promote tomato flowering transition in response to drought. Collectively, our data uncover the essential role of the SlOST1-SlVOZ1 module in regulating flowering in response to drought stress in tomato and offer insights into a novel strategy to balance drought stress response and flowering.


Asunto(s)
Solanum lycopersicum , Ácido Abscísico/metabolismo , Sequías , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/metabolismo , Proteínas Quinasas/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 44(7): 1617-1627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38721707

RESUMEN

BACKGROUND: While it has been hypothesized that high plaque stress and strain may be related to plaque rupture, its direct verification using in vivo coronary plaque rupture data and full 3-dimensional fluid-structure interaction models is lacking in the current literature due to difficulty in obtaining in vivo plaque rupture imaging data from patients with acute coronary syndrome. This case-control study aims to use high-resolution optical coherence tomography-verified in vivo plaque rupture data and 3-dimensional fluid-structure interaction models to seek direct evidence for the high plaque stress/strain hypothesis. METHODS: In vivo coronary plaque optical coherence tomography data (5 ruptured plaques, 5 no-rupture plaques) were acquired from patients using a protocol approved by the local institutional review board with informed consent obtained. The ruptured caps were reconstructed to their prerupture morphology using neighboring plaque cap and vessel geometries. Optical coherence tomography-based 3-dimensional fluid-structure interaction models were constructed to obtain plaque stress, strain, and flow shear stress data for comparative analysis. The rank-sum test in the nonparametric test was used for statistical analysis. RESULTS: Our results showed that the average maximum cap stress and strain values of ruptured plaques were 142% (457.70 versus 189.22 kPa; P=0.0278) and 48% (0.2267 versus 0.1527 kPa; P=0.0476) higher than that for no-rupture plaques, respectively. The mean values of maximum flow shear stresses for ruptured and no-rupture plaques were 145.02 dyn/cm2 and 81.92 dyn/cm2 (P=0.1111), respectively. However, the flow shear stress difference was not statistically significant. CONCLUSIONS: This preliminary case-control study showed that the ruptured plaque group had higher mean maximum stress and strain values. Due to our small study size, larger scale studies are needed to further validate our findings.


Asunto(s)
Enfermedad de la Arteria Coronaria , Vasos Coronarios , Placa Aterosclerótica , Estrés Mecánico , Tomografía de Coherencia Óptica , Humanos , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiopatología , Vasos Coronarios/patología , Rotura Espontánea , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Modelos Cardiovasculares , Anciano , Valor Predictivo de las Pruebas , Síndrome Coronario Agudo/diagnóstico por imagen , Síndrome Coronario Agudo/fisiopatología , Síndrome Coronario Agudo/etiología
17.
Nature ; 572(7767): 56-61, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316207

RESUMEN

The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)-which uses sterilization caused by the maternally inherited endosymbiotic bacteria Wolbachia-is a promising alternative, but can be undermined by accidental release of females infected with the same Wolbachia strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT-SIT) enables near elimination of field populations of the world's most invasive mosquito species, Aedes albopictus. Millions of factory-reared adult males with an artificial triple-Wolbachia infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT-SIT for mosquito vector control.


Asunto(s)
Aedes/microbiología , Aedes/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Wolbachia/patogenicidad , Aedes/crecimiento & desarrollo , Animales , China , Copulación , Estudios de Factibilidad , Femenino , Humanos , Mordeduras y Picaduras de Insectos/prevención & control , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Masculino , Mosquitos Vectores/crecimiento & desarrollo , Control de Calidad , Reproducción
18.
Proc Natl Acad Sci U S A ; 119(21): e2202012119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35588457

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARS­CoV-2 infections and that CASP4 expression correlates with severity of SARS­CoV-2 infection in humans. SARS­CoV-2­infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARS­CoV-2­infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARS­CoV-2­induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.


Asunto(s)
COVID-19 , Caspasas Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamación , Animales , COVID-19/enzimología , COVID-19/patología , Caspasas Iniciadoras/genética , Progresión de la Enfermedad , Humanos , Pulmón/patología , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Tromboinflamación/enzimología , Tromboinflamación/genética
19.
Nano Lett ; 24(8): 2643-2651, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353992

RESUMEN

Developing high-performance electromagnetic interference (EMI) shielding materials that are lightweight and flexible and have excellent mechanical properties is an ideal choice for modern integrated electronic devices and microwave protection. Herein, we report the preparation of core-shell polyaniline (PANI)-based nanofiber membranes for EMI shielding through seed polymerization. Electrospinning a PANI solution leads to homogeneously dispersed PANI on the nanofiber surface, with abundant attachment sites for aniline through electrostatic adsorption and hydrogen bonding interaction, allowing PANI to grow on the nanofiber surfaces. This stable core-shell heterostructure provides more interfaces for reflecting and absorbing microwaves. The PANI/PVDF@PANI membranes achieved a shielding efficiency (SE) of 44.7 dB at a thickness of only 1.2 mm, exhibiting an exceptionally high specific EMI shielding effectiveness (SE/t) of 372.5 dB cm-1. Furthermore, the composite membrane exhibits outstanding mechanical stability, durability, air permeability, and moisture permeability, also making it suitable for applications such as EM shielding clothing.

20.
EMBO J ; 39(10): e103256, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32134151

RESUMEN

Domestication has resulted in reduced salt tolerance in tomato. To identify the genetic components causing this deficiency, we performed a genome-wide association study (GWAS) for root Na+ /K+ ratio in a population consisting of 369 tomato accessions with large natural variations. The most significant variations associated with root Na+ /K+ ratio were identified within the gene SlHAK20 encoding a member of the clade IV HAK/KUP/KT transporters. We further found that SlHAK20 transports Na+ and K+ and regulates Na+ and K+ homeostasis under salt stress conditions. A variation in the coding sequence of SlHAK20 was found to be the causative variant associated with Na+ /K+ ratio and confer salt tolerance in tomato. Knockout mutations in tomato SlHAK20 and the rice homologous genes resulted in hypersensitivity to salt stress. Together, our study uncovered a previously unknown molecular mechanism of salt tolerance responsible for the deficiency in salt tolerance in cultivated tomato varieties. Our findings provide critical information for molecular breeding to improve salt tolerance in tomato and other crops.


Asunto(s)
Mutación con Pérdida de Función , Tolerancia a la Sal , ATPasa Intercambiadora de Sodio-Potasio/genética , Solanum lycopersicum/crecimiento & desarrollo , Barajamiento de ADN , Domesticación , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Solanum lycopersicum/genética , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA