Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 115(1): 155-174, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37025008

RESUMEN

Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Clatrina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Ácido Salicílico/metabolismo , Raíces de Plantas/metabolismo , Transporte de Proteínas , Ácidos Indolacéticos/metabolismo
2.
Chemistry ; 29(62): e202302201, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37565784

RESUMEN

Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.

3.
ACS Appl Mater Interfaces ; 16(19): 24831-24839, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691148

RESUMEN

Constructing artificial photocatalysts with panchromatic solar energy utilization remains an appealing challenge. Herein, two complementary photosensitizers, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) and porphyrin dyes, have been cosensitized in metal covalent organic frameworks (MCOFs), resulting in the MCOFs with strong light absorption covering the full visible spectrum. Under panchromatic light irradiation, the cosensitized MCOFs exhibited remarkable photocatalytic H2 evolution with an optimum rate of up to 33.02 mmol g-1 h-1. Even when exposed to deep-red light (λ = 700 ± 10 nm), a commendable H2 production (0.79 mmol g-1 h-1) was still obtained. Theoretical calculation demonstrated that the [Ru(bpy)3]2+ and porphyrin modules in our MCOFs have a synergistic effect to trigger an interesting dual-channel photosensitization pathway for efficient light-harvesting and energy conversion. This work highlights the potential of combining multiple PSs in MCOFs for panchromatic photocatalysis.

4.
Chem Sci ; 15(22): 8422-8429, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846403

RESUMEN

Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 µmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.

5.
J Hazard Mater ; 424(Pt A): 127301, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34597930

RESUMEN

A key matter in heavy metal removal technology is to develop the adsorbents with efficient adsorption sites. In this study, an oxygen-rich covalent organic framework (JUC-505) was functionalized by carboxyl (-COOH) groups to form synergetic effects aiming for the removal of Cd(II) and Pb(II) ions. JUC-505-COOH shows a high Cd(II) uptake of 504 mg⋅g-1 surpassing most of the reported porous adsorbents. Meanwhile, the kinetics study shows a rapid adsorption process at a high initial concentration (100 mg⋅L-1), and the equilibrium can be reached within 5 min. We investigated the adsorption mechanism in-depth by density functional theory calculations, proving the synergistic effects of surface complexation and hydrogen-bond, which are from the post-modified -COOH groups and the in-situ oxygen atoms of JUC-505, respectively. Moreover, under the interference of common ions in natural water, the removal efficiency of Cd(II) is almost insusceptible, which sheds lights on the potential for the application in the natural water purification. In addition, the Pb(II) uptake (559 mg⋅g-1) and the adsorption kinetics also surpass most of the reported porous adsorbents.

6.
Atten Percept Psychophys ; 83(7): 3035-3045, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34046855

RESUMEN

We investigated small temporal nonalignments between the two eyes' fixations in the reading of English and Chinese. We define nine different patterns of asynchrony and report their spatial distribution across the screen of text. We interpret them in terms of their implications for ocular prevalence-prioritizing the input from one eye over the input from the other eye in higher perception/cognition, even when binocular fusion has occurred. The data are strikingly similar across the two very different orthographies. Asynchronies, in which one eye begins the fixation earlier and/or ends it later, occur most frequently in the hemifield corresponding to that eye. We propose that such small asynchronies cue higher processing to prioritize the input from that eye, during and after binocular fusion.


Asunto(s)
Lectura , Visión Binocular , Movimientos Oculares , Fijación Ocular , Humanos , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA