Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(6): 1437-52, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046443

RESUMEN

Germ cells are vital for transmitting genetic information from one generation to the next and for maintaining the continuation of species. Here, we analyze the transcriptome of human primordial germ cells (PGCs) from the migrating stage to the gonadal stage at single-cell and single-base resolutions. Human PGCs show unique transcription patterns involving the simultaneous expression of both pluripotency genes and germline-specific genes, with a subset of them displaying developmental-stage-specific features. Furthermore, we analyze the DNA methylome of human PGCs and find global demethylation of their genomes. Approximately 10 to 11 weeks after gestation, the PGCs are nearly devoid of any DNA methylation, with only 7.8% and 6.0% of the median methylation levels in male and female PGCs, respectively. Our work paves the way toward deciphering the complex epigenetic reprogramming of the germline with the aim of restoring totipotency in fertilized oocytes.


Asunto(s)
Metilación de ADN , Células Germinativas/metabolismo , Transcriptoma , Movimiento Celular , Cromosomas Humanos X , Análisis por Conglomerados , Embrión de Mamíferos/metabolismo , Femenino , Histonas/metabolismo , Humanos , Masculino , Análisis de Componente Principal , Factores de Transcripción SOX/metabolismo
2.
Mol Cell ; 72(6): 1021-1034.e4, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30472193

RESUMEN

The dynamic transcriptional regulation and interactions of human germlines and surrounding somatic cells during folliculogenesis remain unknown. Using RNA sequencing (RNA-seq) analysis of human oocytes and corresponding granulosa cells (GCs) spanning five follicular stages, we revealed unique features in transcriptional machinery, transcription factor networks, and reciprocal interactions in human oocytes and GCs that displayed developmental-stage-specific expression patterns. Notably, we identified specific gene signatures of two cell types in particular developmental stage that may reflect developmental competency and ovarian reserve. Additionally, we uncovered key pathways that may concert germline-somatic interactions and drive the transition of primordial-to-primary follicle, which represents follicle activation. Thus, our work provides key insights into the crucial features of the transcriptional regulation in the stepwise folliculogenesis and offers important clues for improving follicle recruitment in vivo and restoring fully competent oocytes in vitro.


Asunto(s)
Comunicación Celular/genética , Células de la Granulosa/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología , Reserva Ovárica/genética , Transcriptoma , Adulto , Animales , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Folículo Ovárico/citología , Transducción de Señal/genética , Análisis de la Célula Individual , Especificidad de la Especie , Transcripción Genética , Adulto Joven
3.
PLoS Genet ; 18(8): e1010310, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939513

RESUMEN

Chromosomal mosaicism is common throughout human pre- and post-implantation development. However, the incidence and characteristics of mosaicism in human blastocyst remain unclear. Concerns and confusions still exist regarding the interpretation of chromosomal mosaicism on preimplantation genetic testing for aneuploidy (PGT-A) results and embryo development. Here, we aimed to estimate the genetic concordance between trophectoderm (TE), inner cell mass (ICM) and the corresponding human embryonic stem cells (hESCs), and to explore the characteristics of mosaicism in human blastocyst and hESCs on a single cell level. The single cell sequencing results of TE cells indicated that 65.71% of the blastocysts were mosaic (23 in 35 embryos), while the ICM sequencing results suggested that 60.00% of the blastocysts were mosaic (9 in 15 embryos). The incidence of mosaicism for the corresponding hESCs was 33.33% (2 in 6 embryos). No significant difference was observed between the mosaic rate of TE and that of ICM. However, the mosaic rate of the corresponding hESCs was significantly lower than that of TE and ICM cells, suggesting that the incidence of mosaicism may decline during embryonic development. Upon single cell sequencing, we found several "complementary" copy number variations (CNVs) that were usually not revealed in clinical PGT-A which used multi-cell DNA sequencing (or array analysis). This indicates the potential diagnostic risk of PGT-A based multi-cell analysis routinely in clinical practice. This study provided new insights into the characteristics, and considerable influences, of mosaicism on human embryo development, as well as the clinical risks of PGT-A based on multi-cell biopsies and bulk DNA assays.


Asunto(s)
Mosaicismo , Diagnóstico Preimplantación , Aneuploidia , Blastocisto , Variaciones en el Número de Copia de ADN/genética , Femenino , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Embarazo , Diagnóstico Preimplantación/métodos
4.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166126

RESUMEN

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

5.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428643

RESUMEN

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Asunto(s)
Aurora Quinasa A , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Colangiocarcinoma/etiología , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ratones , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/etiología , Neoplasias de los Conductos Biliares/metabolismo , Humanos , Ratones Noqueados , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Conductos Biliares Extrahepáticos/patología , Modelos Animales de Enfermedad , Colangitis/patología , Colangitis/etiología , Colangitis/metabolismo , Colangitis/genética , Transducción de Señal
6.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G495-G503, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469630

RESUMEN

Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.


Asunto(s)
Neoplasias Hepáticas , Proteínas Proto-Oncogénicas p21(ras) , Ratones , Animales , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Albúminas/genética , Recombinasas/genética , Recombinación Genética , Neoplasias Hepáticas/genética , Integrasas/genética
7.
Langmuir ; 40(13): 7192-7204, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38503714

RESUMEN

The anti-icing and drag-reduction properties of diverse microstructured surfaces have undergone extensive study over the past decade. Nonetheless, tough environments enforce stringent demands on the composite characteristics of superhydrophobic surfaces (SHS). In this study, fresh composite structures were fabricated on a metal substrate by nanosecond laser machining technology, drawing inspiration from the hardy plant Iridaceae. The prepared sample surface mainly consists of a periodic microrhombus array and irregular nanosheets. To comprehensively investigate the effect of its special structure on surface properties, three surfaces with different sizes of rhombic structures were used for comparative analysis, and the results show that the SH-S2 sample is optimal. This can significantly delay the freezing time by an impressive 1404 s at -10 °C while revealing the sample surface anti-icing strategy. In addition, the rheological experiments determined over 300 µm of slip length for the SH-S2 sample, and the drag reduction rate of the surface reaches nearly 40%, which is well aligned with the results of the delayed icing experiments. Finally, the mechanical durability of the SH-S2 surface was investigated through scratch damage, sandpaper abrasion, reparability trials, and icing and melting cycle tests. This research presents a new approach and methodology for the application of SHS on polar ship surfaces.

8.
Reprod Biomed Online ; 49(3): 103991, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38936339

RESUMEN

RESEARCH QUESTION: Does routine clinical practice require an increase in the resolution of preimplantation genetic testing for aneuploidies (PGT-A) to detect segmental aneuploidies ≤5 Mb? DESIGN: This retrospective study analysed 963 trophectoderm biopsies from 346 couples undergoing PGT between 2019 and 2023. Segmental aneuploidies ≥1 Mb were reported. The characteristics, clinical interpretation and concordance of segmental aneuploidies ≤5 Mb were analysed. RESULTS: The incidence of segmental aneuploidies was 15.1% (145/963) in blastocysts, with segmental aneuploidies of ≤5 Mb accounting for 2.3% (22/963). The size of the segmental aneuploidies showed a skewed distribution. Segmental aneuploidies ≤5 Mb were found to occur more frequently on the q arm of the chromosome, compared with the p arm. Losses of ≤5 Mb segmental aneuploidies were more prevalent than gains, with 17 deletions compared with 5 duplications. Of the segmental aneuploidies, 63.6% (14/22) ≤5 Mb were de novo, and 50.0% (7/14) of de-novo segmental aneuploidies were pathogenic/likely pathogenic (P/LP) copy number variations, accounting for 0.7% of 963 blastocysts. For blastocysts carrying ≤5 Mb segmental aneuploidies, a re-analysis of back-up biopsy samples showed that 35.7% of de-novo segmental aneuploidies (5/14) were not detected in the back-up samples. Cases were reported in which prenatal diagnosis (amniocentesis) revealed the absence of embryonic ≤5 Mb segmental aneuploidies detected at the blastocyst stage. CONCLUSIONS: The incidence of P/LP de-novo ≤5 Mb segmental aneuploidies in human blastocysts is extremely low. There is no compelling need to increase the resolution of PGT-A to 5 Mb in routine clinical practice.

9.
J Pathol ; 259(4): 376-387, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36573552

RESUMEN

For stage III colorectal cancer (CRC) patients with a high risk of recurrence, intensified adjuvant chemotherapy can improve overall survival. We aimed to develop a circulating tumor DNA (ctDNA) methylation marker model for predicting the relapse risk of stage III CRC patients. Differentially methylated markers identified between 53 normal mucosa samples and 165 CRC tissue samples, as well as between plasma samples from 75 stage I/II (early-stage) CRC patients and 55 stage IV (late-stage) CRC patients, were analyzed using Student's t-tests. The overlapping methylation markers shared by plasma and tissue samples were used to establish a methylation marker model to evaluate the tumor burden in the peripheral blood of CRC patients using the random forest method. This model was verified in the validation cohort (n = 44) and then applied to predict recurrence risk in 50 stage III CRC patients and monitor the clinical disease course in serial samples from four CRC patients. We built a five-marker-based ctDNA methylation model that had high sensitivity (84.21%) and specificity (84%) in identifying late-stage CRC in a validation cohort containing 24 stage I/II CRC patients and 20 stage IV CRC patients. The model achieved high sensitivity (87.5%) and specificity (94.12%) in predicting tumor relapse in an independent cohort of 50 stage III CRC patients and could be an independent recurrence risk factor for stage III patients [Hazard ratio (HR), 60.4; 95% confidence interval (CI): 7.68-397; p = 9.73e-5]. Analysis of serial blood samples of CRC showed that the model could monitor disease relapse earlier than imaging examination and serum carcinoembryonic antigen (CEA) and so may provide an opportunity for the early adjustment of therapeutic strategies. Moreover, the model could potentially monitor the clinical course and treatment response dynamically. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Humanos , Biomarcadores de Tumor/genética , Metilación de ADN , Recurrencia Local de Neoplasia/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Medición de Riesgo , Ácidos Nucleicos Libres de Células/genética
10.
Environ Sci Technol ; 58(13): 6039-6048, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507701

RESUMEN

Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.


Asunto(s)
Compuestos Orgánicos Volátiles , Purificación del Agua , Destilación , Hidrogeles , Membranas Artificiales , Fenol
11.
Adv Exp Med Biol ; 1445: 47-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967749

RESUMEN

Traditionally, immunoglobulin (Ig) expression has been attributed solely to B cells/plasma cells with well-documented and accepted regulatory mechanisms governing Ig expression in B cells. Ig transcription is tightly controlled by a series of transcription factors. However, increasing evidence has recently demonstrated that Ig is not only produced by B cell lineages but also by various types of non-B cells (non-B-Ig). Under physiological conditions, non-B-Ig not only exhibits antibody activity but also regulates cellular biological activities (such as promoting cell proliferation, adhesion, and cytoskeleton protein activity). In pathological conditions, non-B-Ig is implicated in the development of various diseases including tumour, kidney disease, and other immune-related disorders. The mechanisms underline Ig gene rearrangement and transcriptional regulation of Ig genes in non-B cells are not fully understood. However, existing evidence suggests that these mechanisms in non-B cells differ from those in B cells. For instance, non-B-Ig gene rearrangement occurs in an RAG-independent manner; and Oct-1 and Oct-4, rather than Oct-2, are required for the transcriptional regulation of non-B derived Igs. In this chapter, we will describe and compare the mechanisms of gene rearrangement and expression regulation between B-Ig and non-B-Ig.


Asunto(s)
Regulación de la Expresión Génica , Inmunoglobulinas , Transcripción Genética , Humanos , Animales , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Reordenamiento Génico , Linfocitos B/metabolismo , Linfocitos B/inmunología
12.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255822

RESUMEN

Sepsis ranks among the most common health problems worldwide, characterized by organ dysfunction resulting from infection. Excessive inflammatory responses, cytokine storms, and immune-induced microthrombosis are pivotal factors influencing the progression of sepsis. Our objective was to identify novel immune-related hub genes for sepsis through bioinformatic analysis, subsequently validating their specificity and potential as diagnostic and prognostic biomarkers in an animal experiment involving a sepsis mice model. Gene expression profiles of healthy controls and patients with sepsis were obtained from the Gene Expression Omnibus (GEO) and analysis of differentially expressed genes (DEGs) was conducted. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to analyze genes within crucial modules. The functional annotated DEGs which related to the immune signal pathways were used for constructing protein-protein interaction (PPI) analysis. Following this, two hub genes, FERMT3 and CD3G, were identified through correlation analyses associated with sequential organ failure assessment (SOFA) scores. These two hub genes were associated with cell adhesion, migration, thrombosis, and T-cell activation. Furthermore, immune infiltration analysis was conducted to investigate the inflammation microenvironment influenced by the hub genes. The efficacy and specificity of the two hub genes were validated through a mice sepsis model study. Concurrently, we observed a significant negative correlation between the expression of CD3G and IL-1ß and GRO/KC. These findings suggest that these two genes probably play important roles in the pathogenesis and progression of sepsis, presenting the potential to serve as more stable biomarkers for sepsis diagnosis and prognosis, deserving further study.


Asunto(s)
Experimentación Animal , Sepsis , Animales , Humanos , Ratones , Biomarcadores , Adhesión Celular , Biología Computacional , Modelos Animales de Enfermedad , Sepsis/genética
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 101-105, 2024 Jan 10.
Artículo en Zh | MEDLINE | ID: mdl-38171568

RESUMEN

OBJECTIVE: To determine the karyotype of a patient with mosaicism complex structural aberration of chromosome 18. METHODS: A male patient with a 2-year history of infertility presented at the Center of Reproductive Medicine of the Third Hospital of Peking University in October 2019 was selected as the study subject. Clinical data of the patient was collected. Peripheral blood sample was taken for chromosomal karyotyping, copy number variation (CNV) analysis and fluorescence in situ hybridization (FISH) assay. Semen sample was taken for single sperm CNV analysis. RESULTS: The patient was found to have a karyotype of mos 47,XY,del(18)(q21q23),+r(18)(q21q23)[84]/46,XY,del(18)(q21q23)[9]/48,XY,del(18)(q21q23),+r(18)(q21q23)×2[6]/47,XY,del(18)(q21q23),+r(18)(q21q23×2)[1].ish 47,XY,del(18)(q21q23),+r(18)(q21q23)[84]/46,XY,del(18)(q21q23)[9]/48,XY,del(18)(q21q23),+r(18)(q21q23)×2[6]/47,XY,del(18)(q21q23),+r(18)(q21q23×2)[1]del(18)(q21q23)(D18Z1+,18p+,18q+,WCP18+),r(18)(q21q23)(WCP18+),r(18)(q21q23×2)(WCP18+). No pathogenic CNV was identified. Sequencing of 20 single sperms showed that 1 sperm was normal, 1 had yielded no result, 9 had harbored del(18q), 7 had harbored dup(18q)×2, and 2 had harbored dup(18q)×3. The dup/del fragments had both spanned approximately 33 Mb. CONCLUSION: It is rare for carriers of complex structural and numerical abnormalities of chromosome 18 to have a normal phenotype. Based on the accurate cytogenetic and molecular analyses and the single sperm CNV analysis, the influence of the aberrant karyotype on the gametogenesis may be evaluated.


Asunto(s)
Cromosomas Humanos Par 18 , Mosaicismo , Masculino , Humanos , Hibridación Fluorescente in Situ , Cromosomas Humanos Par 18/genética , Variaciones en el Número de Copia de ADN , Semen , Cariotipo
14.
Angew Chem Int Ed Engl ; 63(3): e202315251, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38085166

RESUMEN

Microbial biosynthesis, as an alternative method for producing quantum dots (QDs), has gained attention because it can be conducted under mild and environmentally friendly conditions, distinguishing it from conventional chemical and physical synthesis approaches. However, there is currently no method to selectively control this biosynthesis process in a subset of microbes within a population using external stimuli. In this study, we have attained precise and selective control over the microbial biosynthesis of QDs through the utilization of an optogenetically engineered Escherichia coli (E. coli). The recombinant E. coli is designed to express smCSE enzyme, under the regulation of eLightOn system, which can be activated by blue light. The smCSE enzymes use L-cysteine and Cd2+ as substrates to form CdS QDs. This system enables light-inducible bacterial biosynthesis of QDs in precise patterns within a hydrogel for information encryption. As the biosynthesis progresses, the optical characteristics of the QDs change, allowing living materials containing the recombinant E. coli to display time-dependent patterns that self-destruct after reading. Compared to static encryption using fluorescent QD inks, dynamic information encryption based on living materials offers enhanced security.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Puntos Cuánticos/química , Escherichia coli , Compuestos de Cadmio/química
15.
J Neurochem ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36625269

RESUMEN

Alzheimer's disease (AD) is a highly heritable disease. The morphological changes of cortical cortex (such as, cortical thickness and surface area) in AD always accompany by the change of the functional connectivity to other brain regions and influence the short- and long-range brain network connections, causing functional deficits of AD. In this study, the first hypothesis is that genetic variations might affect morphology-based brain networks, leading to functional deficits; the second hypothesis is that protein-protein interaction (PPI) between the candidate proteins and known interacting proteins to AD might exist and influence AD. 600 470 variants and structural magnetic resonance imaging scans from 175 AD patients and 214 healthy controls were obtained from the Alzheimer's Disease Neuroimaging Initiative-1 database. A co-sparse reduced-rank regression model was fit to study the relationship between non-synonymous mutations and morphology-based brain networks. After that, PPIs between selected genes and BACE1, an enzyme that was known to be related to AD, are explored by using molecular dynamics (MD) simulation and co-immunoprecipitation (Co-IP) experiments. Eight genes affecting morphology-based brain networks were identified. The results of MD simulation showed that the PPI between TGM4 and BACE1 was the strongest among them and its interaction was verified by Co-IP. Hence, gene variations influence morphology-based brain networks in AD, leading to functional deficits. This finding, validated by MD simulation and Co-IP, suggests that the effect is robust.

16.
Small ; 19(46): e2304694, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455351

RESUMEN

Heterointerface engineering for different identifiable length scales has emerged as a key research area for obtaining materials capable of high-performance electromagnetic wave absorption; however, achieving controllable architectural and compositional complexity in nanomaterials with environmental and thermal stabilities remains challenging. Herein, metal-containing silicon carbonitride (SiCN/M) nanocomposite ceramics with multiphase heterointerfaces were in situ synthesized via coordination crosslinking, catalytic graphitization, and phase separation processes using trace amounts of metal-organic frameworks (MOFs). The results reveal that the regulation of dielectric genes by MOFs can yield considerable lattice strain and abundant lattice defects, contributing to strong interfacial and dipole polarizations. The as-prepared SiCN/M ceramics demonstrate excellent microwave absorption performance: the minimum reflection loss (RLmin ) is -72.6 dB at a thickness of only 1.5 mm and -54.1 dB at an ultralow frequency of 3.56 GHz for the SiCN/Fe ceramics and the RLmin is -55.1 dB with a broad bandwidth of 3.4 GHz at an ultralow thickness of 1.2 mm for the SiCN/CoFe ceramic. The results are expected to provide guidance for the design of future dielectric microwave absorption materials based on heterointerface engineering while offering a paradigm for developing MOF-modified SiCN nanocomposite ceramics with desirable properties.

17.
J Hum Genet ; 68(12): 813-821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37592134

RESUMEN

Hereditary tumor syndromes have garnered substantial attention due to their adverse effects on both the physical and psychological health of patients, as well as the elevated risk of transmission to subsequent generations. This has prompted a growing interest in exploring preimplantation genetic testing (PGT) as a treatment option to mitigate and eliminate these impacts. Several studies have demonstrated that de novo variants have become a great cause of many hereditary tumor syndromes, which introduce certain difficulties to PGT. In the absence of adequate genetic linkage information (parents and offspring), haplotype construction seems unrealizable. In the study, researchers used single sperm or affected embryos as proband to perform single-nucleotide polymorphism linkage analysis for cases with de novo variants. For complicated variants, the strategy that sperm combined with embryo detection will increase accuracy while avoiding the limitations and potential failures of using a single detection material. The study recruited 11 couples with male de novo carriers, including 3 tumor types and 4 genes. To date, 4 couples have been clinically confirmed as pregnant and three healthy babies have been born. The results of amniocentesis or umbilical cord blood verification were consistent with the results of PGT-M. The study aims to introduce the application of the PGT-M strategy in hereditary tumor syndromes.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Masculino , Humanos , Diagnóstico Preimplantación/métodos , Predisposición Genética a la Enfermedad , Semen , Pruebas Genéticas/métodos , Aneuploidia , Ligamiento Genético
18.
Opt Express ; 31(9): 15107-15117, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157359

RESUMEN

Research towards practical applications of ghost imaging lidar system especially in longer sensing distance has been urgent in recent years. In this paper we develop a ghost imaging lidar system to boost an extension of remote imaging, where the transmission distance of the collimated pseudo-thermal beam can be improved hugely over long range and just shifting the adjustable lens assembly generates wide field of view suiting for short-range imaging. Based on the proposed lidar system, the changing tendency of illuminating field of view, energy density, and reconstructed images is analyzed and verified experimentally. Some considerations on the improvement of this lidar system are also discussed.

19.
Reproduction ; 166(2): 117-124, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37252832

RESUMEN

In brief: Whether sperm DNA fragmentation (SDF) affects embryo development and clinical outcomes is still controversial, which limits the utility of SDF testing in assisted reproductive technology management. This study demonstrates that high SDF is associated with the incidence of segmental chromosomal aneuploidy and increased paternal whole chromosomal aneuploidies. Abstract: We aimed to investigate the correlation of sperm DNA fragmentation (SDF) with the incidence and paternal origin of whole and segmental chromosomal aneuploidies of embryos at the blastocyst stage. A retrospective cohort study was conducted with a total of 174 couples (women aged 35 years or younger) who underwent 238 cycles (including 748 blastocysts) of preimplantation genetic testing for monogenic diseases (PGT-M). All subjects were divided into two groups based on the sperm DNA fragmentation index (DFI) level: low DFI (<27%) and high DFI (≥27%). The rates of euploidy, whole chromosomal aneuploidy, segmental chromosomal aneuploidy, mosaicism, parental origin of aneuploidy, fertilization, cleavage, and blastocyst formation were compared between low- and high-DFI groups. We found no significant differences in fertilization, cleavage, or blastocyst formation between the two groups. Compared to that in the low-DFI group, segmental chromosomal aneuploidy rate was significantly higher in the high-DFI group (11.57% vs 5.83%, P = 0.021; OR: 2.32, 95% CI: 1.10-4.89, P = 0.028). The whole chromosomal embryonic aneuploidy of paternal origin was significantly higher in cycles with high DFI than in cycles with low DFI (46.43% vs 23.33%, P = 0.018; OR: 4.32, 95% CI: 1.06-17.66, P = 0.041). However, the segmental chromosomal aneuploidy of paternal origin was not significantly different between the two groups (71.43% vs 78.05%, P = 0.615; OR: 1.01, 95% CI: 0.16-6.40, P = 0.995). In conclusion, our results suggested that high SDF was associated with the incidence of segmental chromosomal aneuploidy and increased paternal whole chromosomal aneuploidies in embryos.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Humanos , Masculino , Femenino , Incidencia , Fragmentación del ADN , Estudios Retrospectivos , Diagnóstico Preimplantación/métodos , Fertilización In Vitro/métodos , Semen , Aneuploidia , Blastocisto , Mosaicismo , Espermatozoides
20.
Pancreatology ; 23(6): 736-741, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37429756

RESUMEN

BACKGROUND: Tissue and cell-specific gene targeting has been widely employed in biomedical research. In the pancreas, the commonly used Cre recombinase recognizes and recombines loxP sites. However, to selectively target different genes in distinct cells, a dual recombinase system is required. METHOD: We developed an alternative recombination system mediated by FLPo, which recognizes frt DNA sequences for pancreatic dual recombinase-mediated genetic manipulation. An IRES-FLPo cassette was targeted between the translation stop code and 3-UTR of the mouse pdx1 gene in a Bacterial Artificial Chromosome using recombineering technology. Transgenic BAC-Pdx1-FLPo mice were developed by pronuclear injection. RESULTS: Highly efficient recombination activity was observed in the pancreas by crossing the founder mice with Flp reporter mice. When the BAC-Pdx1-FLPo mice were bred with conditional FSF-KRasG12D and p53 F/F mice, pancreatic cancer developed in the compound mice. The characteristics of pancreatic cancer resembled those derived from conditional LSL-KRasG12D and p53 L/L mice controlled by pdx1-Cre. CONCLUSIONS: We have generated a new transgenic mouse line expressing FLPo, which enables highly efficient pancreatic-specific gene recombination. When combined with other available Cre lines, this system can be utilized to target different genes in distinct cells for pancreatic research.


Asunto(s)
Páncreas , Proteínas Proto-Oncogénicas p21(ras) , Recombinación Genética , Animales , Ratones , Modelos Animales de Enfermedad , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA