Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 632(8024): 267-272, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987606

RESUMEN

The fermionic Hubbard model (FHM)1 describes a wide range of physical phenomena resulting from strong electron-electron correlations, including conjectured mechanisms for unconventional superconductivity. Resolving its low-temperature physics is, however, challenging theoretically or numerically. Ultracold fermions in optical lattices2,3 provide a clean and well-controlled platform offering a path to simulate the FHM. Doping the antiferromagnetic ground state of a FHM simulator at half-filling is expected to yield various exotic phases, including stripe order4, pseudogap5, and d-wave superfluid6, offering valuable insights into high-temperature superconductivity7-9. Although the observation of antiferromagnetic correlations over short10 and extended distances11 has been obtained, the antiferromagnetic phase has yet to be realized as it requires sufficiently low temperatures in a large and uniform quantum simulator. Here we report the observation of the antiferromagnetic phase transition in a three-dimensional fermionic Hubbard system comprising lithium-6 atoms in a uniform optical lattice with approximately 800,000 sites. When the interaction strength, temperature and doping concentration are finely tuned to approach their respective critical values, a sharp increase in the spin structure factor is observed. These observations can be well described by a power-law divergence, with a critical exponent of 1.396 from the Heisenberg universality class12. At half-filling and with optimal interaction strength, the measured spin structure factor reaches 123(8), signifying the establishment of an antiferromagnetic phase. Our results provide opportunities for exploring the low-temperature phase diagram of the FHM.

2.
Asian J Androl ; 25(3): 339-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36254888

RESUMEN

The process of semen collection plays a key role in the quality of semen specimens. However, the association between semen collection time and semen quality is still unclear. In this study, ejaculates by masturbation from 746 subfertile men or healthy men who underwent semen analysis were examined. The median (interquartile range) semen collection time for all participants was 7.0 (5.0-11.0) min, and the median time taken for semen collection was lower in healthy men than that in subfertile men (6.0 min vs 7.0 min). An increase in the time required to produce semen samples was associated with poorer semen quality. Among those undergoing assisted reproductive technology (ART), the miscarriage rate was positively correlated with the semen collection time. After adjusting for confounders, the highest quartile (Q4) of collection time was negatively associated with semen volume and sperm concentration. A longer time to produce semen samples (Q3 and Q4) was negatively correlated with progressive and total sperm motility. In addition, there was a significant negative linear association between the semen collection time and the sperm morphology. Higher risks of asthenozoospermia (adjusted odds ratio [OR] = 2.06, 95% confidence interval [CI]: 1.31-3.25, P = 0.002) and teratozoospermia (adjusted OR = 1.98, 95% CI: 1.10-3.55, P = 0.02) were observed in Q3 than those in Q1. Our results indicate that a higher risk of abnormal semen parameter values was associated with an increase in time for semen collection, which may be related to male fertility through its association with semen quality.


Asunto(s)
Astenozoospermia , Análisis de Semen , Masculino , Humanos , Semen , Motilidad Espermática , Recuento de Espermatozoides , Espermatozoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA