Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biol Chem ; 300(2): 105617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176653

RESUMEN

Liver can sense the nutrient status and send signals to other organs to regulate overall metabolic homoeostasis. Herein, we demonstrate that ketone bodies act as signals released from the liver that specifically determine the distribution of excess lipid in epididymal white adipose tissue (eWAT) when exposed to a ketogenic diet (KD). An acute KD can immediately result in excess lipid deposition in the liver. Subsequently, the liver sends the ketone body ß-hydroxybutyrate (BHB) to regulate white adipose expansion, including adipogenesis and lipogenesis, to alleviate hepatic lipid accumulation. When ketone bodies are depleted by deleting 3-hydroxy-3-methylglutaryl-CoA synthase 2 gene in the liver, the enhanced lipid deposition in eWAT but not in inguinal white adipose tissue is preferentially blocked, while lipid accumulation in liver is not alleviated. Mechanistically, ketone body BHB can significantly decrease lysine acetylation of peroxisome proliferator-activated receptor gamma in eWAT, causing enhanced activity of peroxisome proliferator-activated receptor gamma, the key adipogenic transcription factor. These observations suggest that the liver senses metabolic stress first and sends a corresponding signal, that is, ketone body BHB, to specifically promote eWAT expansion to adapt to metabolic challenges.


Asunto(s)
Tejido Adiposo Blanco , Dieta Cetogénica , Hígado Graso , Cuerpos Cetónicos , Humanos , Tejido Adiposo Blanco/metabolismo , Hígado Graso/metabolismo , Cuerpos Cetónicos/metabolismo , Lípidos , Hígado/metabolismo , PPAR gamma/metabolismo
2.
Mol Reprod Dev ; 90(10-11): 774-781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733694

RESUMEN

Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.


Asunto(s)
Colesterol , Ácido Mevalónico , Masculino , Humanos , Ácido Mevalónico/metabolismo , Colesterol/metabolismo , Reproducción , Testículo/metabolismo
3.
Langmuir ; 37(17): 5299-5305, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886325

RESUMEN

Spatial confinement has a great impact on the structures and dynamics of interfacial molecular and polymer liquid films. Most prior research has focused on confined liquids of fixed material compliance and often treated them in approximation to the "hard-sphere" interaction model. In this study, we microscopically investigate the structural dynamics of highly deformable poly(N-isopropylacrylamide) (PNIPAM) microgels confined between two solid surfaces in comparison to that of nearly nondeformable microgels of the same chemistry. We observe that the mobility and structural relaxation of highly deformable PNIPAM microgels at an apparent volume fraction, ϕ = 0.49-0.70, show little change with the reduction of gap spacing, in stark contrast to confinement-induced dynamic retardation of "hard-sphere"-like stiff PNIPAM microgels. The critical gap spacing, defined as the onset of confinement effect to deviate from the bulk behavior, is found to be approximately 17-22 particle layers for highly deformable microgels of ϕ = 0.56-0.70, much smaller than that of approximately 40 particle layers or larger for stiff microgels or model "hard-sphere" colloidal liquids of similar ϕ. Additionally, we observe no evident confinement-enhanced structural reorganization of deformable microgels near the confining surfaces when gap spacing approaches the critical gap spacing. Microgel deformation upon strong confinement is attributed to the disrupted confinement-induced ordering of confined microgels. Hence, it is clearly indicated that spatial confinement exhibits a much weaker effect on highly compliant microgel particles than stiff ones, resulting in a significantly less reduction in microgel interfacial dynamics. It therefore gives insights into the molecular design of polymeric thin films of variable compliance to control friction and lubrication.

4.
Soft Matter ; 17(39): 8937-8949, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34549769

RESUMEN

The phase behavior and chain conformational structure of biphasic polyzwitterion-polyelectrolyte coacervates in salted aqueous solution are investigated with a model weak cationic polyelectrolyte, poly(2-vinylpyridine) (P2VP), whose charge fraction can be effectively tuned by pH. It is observed that increasing the pH leads to the increase of the yielding volume fraction and the water content of dense coacervates formed between net neutral polybetaine and cationic P2VP in contrast to the decrease of critical salt concentration for the onset of coacervation, where the P2VP charge fraction is reduced correspondingly. Surprisingly, a single-molecule fluorescence spectroscopic study suggests that P2VP chains upon coacervation seem to adopt a swollen or an even more expanded conformational structure at higher pH. As the hydrophobicity of P2VP chains is accompanied by a reduced charge fraction by increasing the pH, a strong pH-dependent phase and conformational behaviors suggest the shift of entropic and enthalpic contribution to the underlying thermodynamic energy landscape and chain structural dynamics of polyelectrolyte coacervation involving weak polyelectrolytes in aqueous solution.

5.
Soft Matter ; 16(45): 10280-10289, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33047765

RESUMEN

The effect of net charge of zwitterionic polymers on the phase behavior and viscoelastic properties of hybrid polyampholyte-polyoxometalate (POM) complexes in salted aqueous solutions is investigated with polyampholyte copolymers consisting of both positively and negatively charged monomers. Zwitterionic polyampholytes of varied net charge, abbreviated as PAxMy, are synthesized by varying the feeding molar ratio of negatively charged 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) to positively charged [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) monomers in aqueous solution. The coacervate formation between PAxMy and inorganic anionic metatungstate POM ({W12}) in LiCl added aqueous solutions can be enhanced by increasing the molar fraction of positively charged MAPTAC monomer and LiCl concentration. The salt-broadened coacervation, clearly distinct from the salt-suppressed one between oppositely charged polyelectrolytes, suggests the account of zwitterion-anion pairing for PAxMy-{W12} coacervate formation due to stronger binding of multivalent {W12} giant ions with PAxMy than simple ions. Importantly, as AMPS or MAPTAC monomer fraction in polyampholytes is varied by merely ±5% from the effective net neutral case, the viscoelasticity of PAxMy-{W12} coacervates can be modified by 4-5 folds, suggesting a new tuning parameter to fine control the macroionic interactions and material properties of biomimetic complex coacervates.

6.
Soft Matter ; 13(28): 4881-4889, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28631793

RESUMEN

Coacervate complexes that are liquid-liquid separated complex materials are often formed by stoichiometrically mixing oppositely charged polyelectrolytes in salted aqueous solution. Entropy-driven ion pairing, resulting from the release of counterions near polyelectrolytes, has been identified as the primary driving force for coacervate formation between oppositely charged polyelectrolytes, including proteins and DNA, in aqueous solution. In this work we have examined the complexation between net neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and inorganic polyoxometalate (POM) polyanions in LiCl aqueous solutions. Biphasic liquid-like coacervate complexes can be formed over a much broader range of POM-to-PSBMA molar ratio and LiCl concentration than that for conventional polyelectrolyte coacervate complexation. Composition analysis of the dried supernatant and dense coacervate has confirmed that both PSBMA and POM macroions are primarily present in the dense coacervate as the macroion-rich phase in contrast to the presence of LiCl solely in the supernatant as the macroion-poor phase. The increase of net charge negativity of PSBMA and supernatant conductivity suggests stronger binding of PSBMA with POM anions than monovalent Cl-, resulting in the release of bound Cl- anions to the aqueous solution for the formation of PSBMA-POM coacervates in LiCl solution. All experimental evidence has demonstrated the generality of ion-pairing induced coacervate complexation with net neutral zwitterionic polymers and multivalent inorganic nanomaterials. The complexation between organic and inorganic macroions could give insights into many supramolecular assembly processes in nature and also lead to a new paradigm in developing hybrid macroionic materials for emerging applications from green catalysis to nanomedicine.

7.
Langmuir ; 32(21): 5403-11, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27159842

RESUMEN

The application of ionic liquids (ILs) in many industrially relevant processes provides an urgent need to better understand their molecular interactions with biological systems. A detailed understanding of the cytotoxicity mechanism of ILs can be helpful in facilitating the molecular design of nontoxic ILs. Using coarse-grained molecular dynamics (MD) simulations, we investigate the effects of imidazolium-based ILs on several lipid bilayer morphologies. Our results demonstrate that the asymmetric insertion of IL cations into one side of a lipid bilayer leaflet enhances the leaflet strain, which upon reaching a critical value triggers a morphological disruption in the bilayer. Consistently, the bending modulus of the bilayer is reduced by 1 to 2 orders of magnitude relative to that of an IL-free planar bilayer prior to the disruption event. Our results suggest that ILs that can easily insert into the lipid bilayer without diffusing across or inducing lipid flip-flop can be more disruptive to a lipid biomembrane.

8.
Langmuir ; 31(14): 4246-54, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25803421

RESUMEN

The effects of cosolutes on amyloid aggregation kinetics in vivo are critical and not fully understood. To explore the effects of cosolute additives, the in vitro behavior of destabilizing and stabilizing osmolytes with polymer cosolutes on the aggregation of a model amyloid, human insulin, is probed using experiments coupled with an amyloid aggregation reaction model. The destabilizing osmolyte, guanidine hydrochloride (GuHCl), induces biphasic behavior on the amyloid aggregation rate exhibited by an enhancement of the aggregation kinetics at low concentrations of GuHCl (<0.6 M) and a reduction in kinetics at higher GuHCl concentrations. Stabilizing osmolytes, glycerol, sorbitol and trimethylamine N-oxide, slow the rate of aggregation by reducing the rate of monomer unfolding. Polymer cosolutes, polyvinylpyrrolidone 3.5 kDa and 40 kDa, delay amyloid aggregation mainly through a decrease in the nucleation reaction. These results are in good agreement with the volume exclusion principle for polymer crowding and supports the need to include conformational rearrangement of monomers prior to nucleation. Using fluorescence correlation spectroscopy, we demonstrate that amyloid aggregation is nondiffusion limited, except during fibril accumulation in the presence of high concentrations of long chain polymers. Lastly, the neutral surface area of osmolytes correlates well with the time to initiate fibril formation, tlag, which implicates an intrinsic osmolyte property underlying preferential interactions.


Asunto(s)
Amiloide/química , Insulina/química , Ósmosis/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Difusión , Guanidina/farmacología , Humanos , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Termodinámica
9.
Langmuir ; 31(47): 12920-8, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26540211

RESUMEN

We report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10(-3) h(-1)). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. The present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.


Asunto(s)
Nanopartículas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Rastreo Diferencial de Calorimetría , Dimiristoilfosfatidilcolina/química
10.
Soft Matter ; 11(27): 5485-91, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26061613

RESUMEN

"Fragile" glassy materials, which include most polymeric materials and organic liquids, exhibit a steep and super-Arrhenius dependence of relaxation time with temperature upon the glass transition and have been extensively studied. Yet, a full understanding of strong glass formers that exhibit an Arrhenius dependence on temperature is still lacking. In this work, we have investigated the glassy dynamics of poly(N-isopropylacrylamide) (PNIPAM) microgel particles of varied elasticity in dense aqueous suspensions, giving rise to a full spectrum of strong to fragile glass-forming behaviors. We have observed the dependence of particle motions and structural relaxation on particle volume fraction can be weakened by decreasing particle elasticity, due to particle deformation and the resulting interparticle elastic interaction upon intimate particle contacts at high particle concentration. Both measured α-relaxation time scales and dynamic length scales for cooperative rearranging motions of microgels in suspensions show similarly dependence on particle volume fraction and elasticity, thereby quantifying the glass fragility of dense microgel suspension of varied particle elasticity.

11.
Biomacromolecules ; 15(7): 2760-8, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24955481

RESUMEN

Healthy synovial fluids (SFs) are complex fluids consisting of biopolymers, globule proteins, and lipids and regarded as superlubricants to provide nearly life-long low friction and wear protection of synovial joints in mammals. In this paper, we report that the intricate lubricious mixture can be simulated by the aggregation of hyaluronic acid (HA) and hydrogel particles in aqueous suspensions. In the HA aqueous suspensions added with synthetic polymer microgels, we have effectively captured the bulk rheological properties of healthy SFs. It is also confirmed by light scattering and fluorescence microscopic characterization that added hydrogel particles can enhance the HA network by hydrogel-mediated hydrogen bonding, leading to the fractal HA-hydrogel aggregating networks in aqueous suspensions. The potential application of HA-hydrogel particle aggregates as biomimetic superlubricants is supported by the comparable low friction at high load to that of healthy SFs.


Asunto(s)
Resinas Acrílicas/química , Ácido Hialurónico/química , Lubricantes/química , Animales , Biomimética , Bovinos , Módulo de Elasticidad , Fricción , Hidrogeles/química , Líquido Sinovial/química , Viscosidad , Agua/química
12.
Soft Matter ; 10(43): 8641-51, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25248460

RESUMEN

Current bottlenecks in the large-scale commercial use of many ionic liquids (ILs) include their high costs, low biodegradability, and often unknown toxicities. As a proactive effort to better understand the molecular mechanisms of ionic liquid toxicities, the work herein presents a comprehensive molecular simulation study on the interactions of 1-n-alkyl-3-methylimidazolium-based ILs with a phosphatidylcholine (PC) lipid bilayer. We explore the effects of increasing alkyl chain length (n = 4, 8, and 12) in the cation and anion hydrophobicity on the interactions with the lipid bilayer. Bulk atomistic molecular dynamics (MD) simulations performed at millimolar (mM) IL concentrations show spontaneous insertion of cations into the lipid bilayer regardless of the alkyl chain length and a favorable orientational preference once a cation is inserted. Cations also exhibit the ability to "flip" inside the lipid bilayer (as is common for amphiphiles) if partially inserted with an unfavorable orientation. Moreover, structural analysis of the lipid bilayer show that cationic insertion induces roughening of the bilayer surface, which may be a precursor to bilayer disruption. To overcome the limitation in the timescale of our simulations, free energies for a single IL cation and anion insertion have been determined based on potential of mean force calculations. These results show a decrease in free energy in response to both short and long alkyl chain IL cation insertion, and likewise for a single hydrophobic anion insertion, but an increase in free energy for the insertion of a hydrophilic chloride anion. Both bulk MD simulations and free energy calculations suggest that toxicity mechanisms toward biological systems are likely caused by ILs behaving as ionic surfactants. [Yoo et al., Soft Matter, 2014].


Asunto(s)
Imidazoles/química , Líquidos Iónicos/química , Membrana Dobles de Lípidos/química , Modelos Químicos , Simulación de Dinámica Molecular , Fosfatidilcolinas/química
13.
J Genet Genomics ; 51(7): 735-748, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38479452

RESUMEN

In mammals, the neonatal heart can regenerate upon injury within a short time after birth, while adults lose this ability. Metabolic reprogramming has been demonstrated to be critical for cardiomyocyte proliferation in the neonatal heart. Here, we reveal that cardiac metabolic reprogramming could be regulated by altering global protein lactylation. By performing 4D label-free proteomics and lysine lactylation (Kla) omics analyses in mouse hearts at postnatal days 1, 5, and 7, 2297 Kla sites from 980 proteins are identified, among which 1262 Kla sites from 409 proteins are quantified. Functional clustering analysis reveals that the proteins with altered Kla sites are mainly involved in metabolic processes. The expression and Kla levels of proteins in glycolysis show a positive correlation while a negative correlation in fatty acid oxidation. Furthermore, we verify the Kla levels of several differentially modified proteins, including ACAT1, ACADL, ACADVL, PFKM, PKM, and NPM1. Overall, our study reports a comprehensive Kla map in the neonatal mouse heart, which will help to understand the regulatory network of metabolic reprogramming and cardiac regeneration.


Asunto(s)
Animales Recién Nacidos , Miocardio , Proteómica , Animales , Ratones , Miocardio/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Miocitos Cardíacos/metabolismo , Corazón , Glucólisis/genética , Reprogramación Metabólica
14.
Langmuir ; 29(10): 3259-68, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23441753

RESUMEN

The structure of a hydrated poly(N-isopropylacrylamide) brush loaded with 5 vol % Isoniazid is studied as a function of temperature using neutron reflectometry (NR) and atomic force microscopy (AFM). NR measurements show that Isoniazid increases the thickness of the brush before, during and after the polymer collapse, and it is retained inside the brush at all measured temperatures. The Isoniazid concentration in the expanded brush is ~14% higher than in the bulk solution, and the concentration nearly doubles in the collapsed polymer, suggesting stronger binding between Isoniazid and the polymer compared to water, even at temperatures below the lower critical solution temperature (LCST) where the polymer is hydrophilic. Typically, additives that bind strongly to the polymer backbone and increase the hydrophilicity of the polymer will delay the onset of the LCST, which is suggested by AFM and NR measurements. The extent of small-molecule loading and distribution throughout a thermo-responsive polymer brush, such as pNIPAAm, will have important consequences for applications such as drug delivery and gating.


Asunto(s)
Acrilamidas/química , Microscopía de Fuerza Atómica/métodos , Polímeros/química , Resinas Acrílicas , Portadores de Fármacos/química , Isoniazida/química
15.
Cell Rep ; 42(10): 113229, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815915

RESUMEN

Bacterial ribonucleoprotein bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here, we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis. We find 111 BR-body-enriched proteins showing that BR-bodies are more complex than previously assumed. We identify five BR-body-enriched proteins that undergo RNA-dependent phase separation in vitro with a complex network of condensate mixing. We observe that some RNP condensates co-assemble with preferred directionality, suggesting that RNA may be trafficked through RNP condensates in an ordered manner to facilitate mRNA processing/decay, and that some BR-body-associated proteins have the capacity to dissolve the condensate. Altogether, these results suggest that a complex network of protein-protein and protein-RNA interactions controls BR-body phase separation and RNA processing.


Asunto(s)
Proteoma , ARN , Proteoma/metabolismo , Proteómica , Ribonucleoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Langmuir ; 28(37): 13201-7, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22924894

RESUMEN

The manipulation and assembly of polystyrene-based Janus particles of varied surface chemistry on one hemispherical particle surface under high frequency nonuniform ac-electric fields is examined experimentally by in situ microscopic observation. Strong effects of ac-field frequency, medium conductivity, and particle surface chemistry on the structure of Janus colloidal assembly are observed. At low medium conductivity, σ(m) from 0.0007 S/m to 0.0153 S/m, pearl chains of Janus particles are observed over the ac-frequency range from 25 kHz to 20 MHz, indicating the dielectrophoresis (DEP)-directed assembly. In contrast, the chaining of Janus particles is disrupted in a certain frequency range at high σ(m) from 0.0153 S/m to 0.116 S/m, suggesting the combining effects of both induced-charge electrophoresis (ICEP) and DEP. The critical transition frequency for the onset of the fractal aggregation at high σ(m) from 0.0153 S/m to 0.116 S/m is experimentally determined, showing a good agreement with the theoretically predicted upper ICEP frequency limit. Additionally, it is demonstrated that by using zwitterionic Janus particles, the assembled structure of Janus particles under ac-fields can be modified by the chemical coatings on each hemispherical surface of Janus particles.

17.
J Am Chem Soc ; 133(28): 10983-9, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21631111

RESUMEN

Understanding the interaction between functional nanoparticles and cell membranes is critical to use nanomaterials for broad biomedical applications with minimal cytotoxicity. In this work, we have investigated the effect of adsorbed semihydrophobic nanoparticles (NPs) on the dynamics and morphology of model cell membranes. We have systematically varied the degree of surface hydrophobicity of carboxyl end-functionalized polystyrene NPs of varied size in buffer solutions with varied ionic strength. It is observed that semihydrophobic NPs can readily adsorb on neutral SLBs and drag lipids from SLBs to NP surfaces. Above a critical NP concentration, the disruption of SLBs is observed, accompanied with the formation and rapid growth of lipid-poor regions on NP-adsorbed SLBs. In the study of the effect of solution ionic strength on NP surface hydrophobic degree and the growth of lipid-poor regions, we have concluded that the hydrophobic interaction enhanced by screened electrostatic interaction underlies the envelopment of NPs by lipids that are attracted from SLBs to the surface of NPs or their aggregates. Hence, the formation and growth of lipid-poor regions, or vaguely referred as "pores" or "holes" in the literature, can be controlled by NP concentration, size, and surface hydrophobicity, which is critical to design functional nanomaterials for effective nanomedicine while minimizing possible cytotoxicity.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Nanopartículas/química , Adsorción , Difusión , Microscopía Fluorescente , Concentración Osmolar
18.
Front Chem ; 9: 563864, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249855

RESUMEN

Polyethylene oxide (PEO)-based polymers are commonly studied for use as a solid polymer electrolyte for rechargeable Li-ion batteries; however, simultaneously achieving sufficient mechanical integrity and ionic conductivity has been a challenge. To address this problem, a customized polymer architecture is demonstrated wherein PEO bottle-brush arms are hyperbranched into a star architecture and then functionalized with end-grafted, linear PEO chains. The hierarchical architecture is designed to minimize crystallinity and therefore enhance ion transport via hyperbranching, while simultaneously addressing the need for mechanical integrity via the grafting of long, PEO chains (M n = 10,000). The polymers are doped with lithium bis(trifluoromethane) sulfonimide (LiTFSI), creating hierarchically hyperbranched (HB) solid polymer electrolytes. Compared to electrolytes prepared with linear PEO of equivalent molecular weight, the HB PEO electrolytes increase the room temperature ionic conductivity from ∼2.5 × 10-6 to 2.5 × 10-5 S/cm. The conductivity increases by an additional 50% by increasing the block length of the linear PEO in the bottle brush arms from M n = 1,000 to 2,000. The mechanical properties are improved by end-grafting linear PEO (M n = 10,000) onto the terminal groups of the HB PEO bottle-brush. Specifically, the Young's modulus increases by two orders of magnitude to a level comparable to commercial PEO films, while only reducing the conductivity by 50% below the HB electrolyte without grafted PEO. This study addresses the trade-off between ion conductivity and mechanical properties, and shows that while significant improvements can be made to the mechanical properties with hierarchical grafting of long, linear chains, only modest gains are made in the room temperature conductivity.

19.
Lab Chip ; 9(22): 3193-201, 2009 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19865725

RESUMEN

We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.


Asunto(s)
Técnicas Analíticas Microfluídicas , Sedimentación Sanguínea , Separación Celular/instrumentación , Separación Celular/métodos , Electrodos , Electroforesis/métodos , Eritrocitos/química , Liposomas/química , Tamaño de la Partícula
20.
Langmuir ; 25(23): 13448-55, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19863074

RESUMEN

This Article describes a facile method to prepare smooth and homogeneous polymer brush surfaces of variable grafting density from a solid surface by combining Langmuir-Blodgett (LB) deposition with surface-initiated atom transfer radical polymerization (SI-ATRP). This method is successfully demonstrated by the preparation of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush surfaces on smooth silicon and quartz substrates. With the custom-synthesized inert diluent whose chemical structure, except end-functionality, is the same as that of the reactive initiator, smooth and chemically homogeneous mixed monolayers of initiators and inert diluents are immobilized on a solid surface by LB deposition, allowing the further variation of the grafting density of PNIPAM brushes grafted from the initiator monolayers of varied initiator coverage. With the optimized molar ratio of deactivator, Cu(II) in the Cu(I)-ligand catalyst complex, the brush thickness of PNIPAM brushes at varied grafting density is controlled to grow nearly linearly with reaction time while smoothness and chemical homogeneity of PNIPAM brushes are achieved. For the demonstrated PNIPAM brush surfaces, the thermoresponsive characteristics of PNIPAM brushes are also verified. This combined LB-ATRP method can be applied to graft a variety of polymer brushes, including polyelectrolytes and block copolymers, from different solid substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA