Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046432

RESUMEN

This study aimed to evaluate a novel albumin-binding strategy for addressing the challenge of insufficient tumor retention of fibroblast activation protein inhibitors (FAPIs). Maleimide, a molecule capable of covalent binding to free thiol groups, was modified to conjugate with FAPI-04 in order to enhance its binding to endogenous albumin, resulting in an extended blood circulation half-life and increased tumor uptake. DOTA-FAPI-maleimide was prepared and radiolabeled with Ga-68 and Lu-177, followed by cellular assays, pharmacokinetic analysis, PET/CT, and SPECT/CT imaging to assess the probe distribution in various tumor-bearing models. Radiolabeling of the modified probe was successfully achieved with a radiochemical yield of over 99% and remained stable for 144 h. Cellular assays showed that the ligand concentration required for 50% inhibition of the probe was 1.20 ± 0.31 nM, and the Kd was 0.70 ± 0.07 nM with a Bmax of 7.94 ± 0.16 fmol/cell, indicative of higher specificity and affinity of DOTA-FAPI-maleimide compared to other FAPI-04 variants. In addition, DOTA-FAPI-maleimide exhibited a persistent blood clearance half-life of 7.11 ± 0.34 h. PET/CT images showed a tumor uptake of 2.20 ± 0.44%ID/g at 0.5 h p.i., with a tumor/muscle ratio of 5.64 in HT-1080-FAP tumor-bearing models. SPECT/CT images demonstrated long-lasting tumor retention. At 24 h p.i., the tumor uptake of [177Lu]Lu-DOTA-FAPI-maleimide reached 5.04 ± 1.67%ID/g, with stable tumor retention of 3.40 ± 1.95%ID/g after 4 days p.i. In conclusion, we developed and evaluated the thiol group-attaching strategy, which significantly extended the circulation and tumor retention of the adapted FAPI tracer. We envision its potential application for clinical cancer theranostics.

2.
Mol Pharm ; 21(4): 1942-1951, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447198

RESUMEN

The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.


Asunto(s)
Bencimidazoles , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Microambiente Tumoral , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Bencimidazoles/química , Bencimidazoles/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Humanos
3.
Angew Chem Int Ed Engl ; 63(30): e202401683, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38719735

RESUMEN

Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and ß-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.

4.
Bioconjug Chem ; 34(12): 2387-2397, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055912

RESUMEN

The objective of this study is to compare a series of albumin-based folate radiotracers for the potential imaging of folate receptor (FR) positive macrophages in advanced atherosclerotic plaques. Diversified radioiodinated FR-targeting albumin-binding probes ([131I]IBAbHF, [131I]IBNHF, and [131I]HF) were developed through various strategies. Among the three radiotracers, [131I]IBAbHF and [131I]IBNHF showed excellent in vitro stability (>98%) in saline and PBS 7.4 for 24 h. Also, good stability of [131I]IBNHF in mouse serum albumin was monitored using an HSA ELISA kit. The experiments in Raw264.7 macrophages activated by ox-LDL confirmed the specificity of tracers for FR-ß. Biodistribution studies of radiotracers were performed to verify the prolonged blood half-life. Prolonged blood half-lives of [131I]IBAbHF, [131I]HF, and [131I]IBNHF were 17.26 ± 4.29, 6.33 ± 2.64, and 5.50 ± 1.26 h, respectively. SPECT-CT imaging of ApoE-/- mice at different stages was performed to evaluate the progression and monitor the prognosis of AS. Evident [131I]IBNHF uptake in atherosclerotic lesions could be observed along with a low background signal. In summary, we demonstrated a proof-of-concept of albumin-based radioligands for FR-targeting atherosclerosis imaging and found that different incorporation of radioiodinated groups resulted in different pharmacokinetic properties. Among these candidate compounds, [131I]IBNHF would be a satisfactory radiotracer for SPECT imaging of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Albúminas , Aterosclerosis/diagnóstico por imagen , Ácido Fólico/química , Placa Aterosclerótica/diagnóstico por imagen , Distribución Tisular
5.
Mol Pharm ; 20(2): 1015-1024, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36562303

RESUMEN

Benzamide (BZA), a small molecule that can freely cross cell membranes and bind to melanin, has served as an effective targeting group for melanoma theranostics. In this study, a novel pyridine-based BZA dimer (denoted as H-2) was labeled with 68Ga ([68Ga]Ga-H-2) for positron emission tomography (PET) imaging of malignant melanomas. [68Ga]Ga-H-2 was obtained with high radiochemical yield (98.0 ± 2.0%) and satisfactory radiochemical purity (>95.0%). The specificity and affinity of [68Ga]Ga-H-2 were confirmed in melanoma B16F10 cells and in vivo PET imaging of multiple tumor models (B16F10 tumors, A375 melanoma, and lung metastases). Monomeric [68Ga]Ga-H-1 was prepared as a control radiotracer to verify the effects of the molecular structure on pharmacokinetics. The values of the lipid-water partition coefficient of [68Ga]Ga-H-2 and [68Ga]Ga-H-1 demonstrated hydrophilicity with log P = -2.37 ± 0.07 and -2.02 ± 0.09, respectively. PET imaging and biodistribution showed a higher uptake of [68Ga]Ga-H-2 in B16F10 primary and metastatic melanomas than that in A375 melanomas. However, the relatively low uptake of monomeric [68Ga]Ga-H-1 in B16F10 tumors and high accumulation in nontarget organs resulted in poor PET imaging quality. This study demonstrates the synthesis and preclinical evaluation of the novel pyridine-based BZA dimer [68Ga]Ga-H-2 and indicates that the dimer tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma.


Asunto(s)
Radioisótopos de Galio , Melanoma Experimental , Animales , Radioisótopos de Galio/química , Distribución Tisular , Melanoma Experimental/diagnóstico por imagen , Melanoma Experimental/metabolismo , Benzamidas/química , Tomografía de Emisión de Positrones/métodos , Piridinas , Línea Celular Tumoral , Melanoma Cutáneo Maligno
6.
Mol Pharm ; 20(7): 3529-3538, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37243620

RESUMEN

The stimulator of interferon genes (STING) is a pivotal protein in the production of STING-dependent type I interferon, which has the potential to enhance tumor rejection. The visualization of STING in the tumor microenvironment is valuable for STING-related treatments, but few STING imaging probes have been reported to date. In this study, we developed a novel 18F-labeled agent ([18F]F-CRI1) with an acridone core structure for the positron emission tomography (PET) imaging of STING in CT26 tumors. The probe was successfully prepared with a nanomolar STING binding affinity of Kd = 40.62 nM. [18F]F-CRI1 accumulated quickly in the tumor sites and its uptake reached a maximum of 3.02 ± 0.42% ID/g after 1 h i.v. injection. The specificity of [18F]F-CRI1 was confirmed both in in vitro cell uptake and in vivo PET imaging by blocking studies. Our findings suggest that [18F]F-CRI1 may be a potential agent for visualizing STING in the tumor microenvironment.


Asunto(s)
Radioisótopos de Flúor , Neoplasias , Humanos , Tomografía de Emisión de Positrones/métodos , Neoplasias/diagnóstico por imagen , Interferones , Línea Celular Tumoral , Microambiente Tumoral
7.
Bioconjug Chem ; 33(11): 2170-2179, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36256849

RESUMEN

We put forward a novel targeting-triggering-therapy (TTT) scheme that combines 64Cu-based targeted radionuclide therapy (TRT) with programmed death-ligand 1 (PD-L1)-based immunotherapy for enhancing therapeutic efficacy. The αvß3 integrin-targeted 64Cu-DOTA-EB-cRGDfK (64Cu-DER) was synthesized. Flow cytometry, immunofluorescence staining, and RT-qPCR were performed to verify PD-L1 upregulation after irradiation with 64Cu-DER. Positron emission tomography imaging was performed to investigate the prominent tumor retention property of 64Cu-DER. In the MC38 tumor model, anti-PD-L1 antibody (αPD-L1 mAb) was delivered in a concurrent or sequential manner after 64Cu-DER was injected, followed by the testing of changes in tumor microenvironment (TME). PD-L1 was upregulated in a time- and dose-dependent manner after being induced by 64Cu-DER. The combination of 64Cu-DER TRT (925 MBq/kg) and αPD-L1 mAb (10 mg/kg) resulted in significant delay in tumor growth and protected against tumor rechallenge. Blockade of PD-L1 at 4 h after 64Cu-DER TRT (64Cu-DER + αPD-L1 mAb @ 4 h combination group) was able to achieve 100% survival rate, prevent tumor relapse, and evidently prolong the survival of mice. In summary, the combination of 64Cu-DER and αPD-L1 mAb in a time-dependent manner could be a promising approach to improve therapeutic efficacy. Understandably, this strategy has the potential to extend the scope of 64Cu-based TTT and merits translation into clinical practice for the better management of immune checkpoint blockade immunotherapy.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Animales , Ratones , Línea Celular Tumoral , Inmunoterapia/métodos , Microambiente Tumoral , Factores Inmunológicos , Oligopéptidos
8.
Opt Express ; 30(20): 35854-35870, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258527

RESUMEN

Optical coherence tomography angiography (OCTA) images suffer from inevitable micromotion (breathing, heartbeat, and blinking) noise. These image artifacts can severely disturb the visibility of results and reduce accuracy of vessel morphological and functional metrics quantization. Herein, we propose a multiple wavelet-FFT algorithm (MW-FFTA) comprising multiple integrated processes combined with wavelet-FFT and minimum reconstruction that can be used to effectively attenuate motion artifacts and significantly improve the precision of quantitative information. We verified the fidelity of image information and reliability of MW-FFTA by the image quality evaluation. The efficiency and robustness of MW-FFTA was validated by the vessel parameters on multi-scene in vivo OCTA imaging. Compared with previous algorithms, our method provides better visual and quantitative results. Therefore, the MW-FFTA possesses the potential capacity to improve the diagnosis of clinical diseases with OCTA.


Asunto(s)
Artefactos , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Reproducibilidad de los Resultados , Algoritmos , Angiografía/métodos
9.
Eur J Nucl Med Mol Imaging ; 49(2): 503-516, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34155537

RESUMEN

PURPOSE: The formation of advanced plaques, which is characterized by the uninterrupted aggregation of macrophages with high expression of folate receptor-ß (FR-ß), is observed in several concomitant metabolic syndromes. The objective of this study was to develop a novel FR-ß-targeted single-photon emission computed tomography (SPECT) radiotracer and validate its application to the noninvasive detection of atherosclerosis (AS) plaque and non-alcoholic fatty liver (NAFL). METHODS: Two radioiodinated probes, [131I]IPBF and [131I]IBF, were developed, and cell uptake studies were used to identify their specific targets for activated macrophages. Biodistribution in normal mice was performed to obtain the pharmacokinetic information of the probes. Apolipoprotein E knockout (ApoE-/-) mice with atherosclerotic aortas were induced by a high-fat and high-cholesterol (HFHC) diet. To investigate the affinity of radiotracers to FR-ß, Kd values were determined using in vitro assays. In addition, the assessments of the aorta in the ApoE-/- mice at different stages were performed using in vivo SPECT/CT imaging, and the findings were compared by histology. RESULTS: Both [131I]IPBF and [131I]IBF were synthesized with > 95% radiochemical purity and up to 3 MBq/nmol molar activity. In vitro assay of [131I]IPBF showed a moderate binding affinity to plasma proteins and specific uptake in activated macrophages. The prolonged blood elimination half-life (t1/2z) of [131I]IPBF (8.14 h) was observed in a pharmacokinetic study of normal mice, which was significantly longer than that of [131I]IBF (t1/2z = 2.95 h). As expected, the Kd values of [131I]IPBF and [131I]IBF in the Raw 264.7 cells were 43.94 ± 9.83 nM and 61.69 ± 15.19 nM, respectively. SPECT imaging with [131I]IPBF showed a high uptake in advanced plaques and NAFL. Radioactivity in excised aortas examined by ex vivo autoradiography further confirmed the specific uptake of [131I]IPBF in high-risk AS plaques. CONCLUSIONS: In summary, we reported a proof-of-concept study of an albumin-binding folate derivative for macrophage imaging. The FR-ß-targeted probe, [131I]IPBF, significantly prolongs the plasma elimination half-life and has the potential for the monitoring of AS plaques and concomitant fatty liver.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único , Albúminas , Animales , Macrófagos/metabolismo , Ratones , Radiofármacos/farmacocinética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
10.
Eur J Nucl Med Mol Imaging ; 49(8): 2645-2654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35122512

RESUMEN

PURPOSE: Bacterial infection and antibiotic resistance are serious threats to human health. This study aimed to develop two novel radiotracers, 18F-NTRP and 18F-NCRP, that possess a specific nitroreductase (NTR) response to image deep-seated bacterial infections using positron emission tomography (PET). This method can distinguish infection from sterile inflammation. METHODS: 18F-NTRP and 18F-NCRP were synthesized via a one-step method; all the steps usually involved in tracer radiosynthesis were successfully adapted in the All-In-One automated module. After the physiochemical properties of 18F-NTRP and 18F-NCRP were characterized, their specificity and selectivity for NTR were verified in E. coli and S. aureus. The ex vivo biodistribution of the tracers was evaluated in normal mice. MicroPET-CT imaging was performed in mouse models of bacterial infection and inflammation after the administration of 18F-NTRP or 18F-NCRP. RESULTS: Fully automated radiosynthesis of 18F-NTRP and 18F-NCRP was achieved within 90-110 min with overall decay-uncorrected, isolated radiochemical yields of 21.24 ± 4.25% and 11.3 ± 3.78%, respectively. The molar activities of 18F-NTRP and 18F-NCRP were 320 ± 40 GBq/µmol and 275 ± 33 GBq/µmol, respectively. In addition, 18F-NTRP and 18F-NCRP exhibited high selectivity and specificity for NTR response. PET-CT imaging in bacteria-infected mouse models with 18F-NTRP or 18F-NCRP showed significant radioactivity uptake in either E. coli- or S. aureus-infected muscles. The uptake for E. coli-infected muscles, 2.4 ± 0.2%ID/g with 18F-NTRP and 4.05 ± 0.49%ID/g with 18F-NCRP, was up to three times greater than that for uninfected control muscles. Furthermore, for both 18F-NTRP and 18F-NCRP, the uptake in bacterial infection was 2.6 times higher than that in sterile inflammation, allowing an effective distinction of infection from inflammation. CONCLUSION: 18F-NTRP and 18F-NCRP are worth further investigation to verify their potential clinical application for distinguishing bacterial infection from sterile inflammation via their specific NTR responsiveness.


Asunto(s)
Infecciones Bacterianas , Mecloretamina , Animales , Escherichia coli , Radioisótopos de Flúor/química , Humanos , Inflamación/diagnóstico por imagen , Ratones , Nitrorreductasas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Staphylococcus aureus , Distribución Tisular , Tomografía Computarizada por Rayos X
11.
Eur J Nucl Med Mol Imaging ; 50(1): 27-37, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066666

RESUMEN

PURPOSE: Stimulator of interferon genes (STING) protein plays a vital role in the immune surveillance of tumor microenvironment. Monitoring STING expression in tumors benefits the relevant STING therapy. This study aimed to develop a novel 18F-labeled agonist, dimeric amidobenzimidazole (diABZI), and firstly evaluate the feasibility of noninvasive positron emission tomography (PET) imaging of STING expression in the tumor microenvironment. METHODS: An analog of the STING agonist NOTA-DABI was synthesized and labeled with 18F via Al18F-NOTA complexation (denoted as [18F]F-DABI). Physicochemical properties, STING protein-binding affinity, and specificity of [18F]F-DABI were evaluated using cell uptake and docking assays. In vivo small-animal PET imaging and biodistribution studies of [18F]F-DABI in tumor-bearing mice were performed to verify the pharmacokinetics and tumor targeting ability. The correlation between tumor uptake and STING expression was also analyzed. RESULTS: [18F]F-DABI was produced conveniently with high radiochemical yield (44 ± 15%), radiochemical purity (> 97%) and molar activity (15-30 GBq/µmol). In vitro binding assays demonstrated that [18F]F-DABI has a favorable affinity and specificity for STING with a KD of 12.98 ± 2.07 nM. In vivo studies demonstrated the specificity of [18F]F-DABI for PET imaging of STING expression with B16F10 tumor uptake of 10.93 ± 0.93%ID/g, which was significantly different from that of blocking groups (3.13 ± 0.88%ID/g, ***p < 0.0001). Furthermore, tumor uptake of [18F]F-DABI was well positively correlated with STING expression in different tumor types. Biodistribution results demonstrated that [18F]F-DABI was predominately uptaken in the liver and intestines, indicating its hepatobiliary elimination. CONCLUSION: This proof-of-concept study demonstrated a STING-binding radioligand for PET imaging, which could be used as a potential companion diagnostic tool for related STING-agonist therapies.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Animales , Ratones , Radioisótopos de Flúor/farmacocinética , Distribución Tisular , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Expresión Génica , Interferones
12.
Mol Pharm ; 18(11): 4140-4147, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657437

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease with poor prognosis. Evidence has shown that vimentin is a key regulator of lung fibrogenesis. 99mTc-labeled N-acetylglucosamine-polyethyleneimine (NAG-PEI), a vimentin-targeting radiotracer, was used for the early diagnosis of IPF, and NAG-PEI was also used as a therapeutic small interfering RNA (siRNA) delivery vector for the treatment of IPF in this study. Single-photon emission-computed tomography (SPECT) imaging of bleomycin (BM)- and silica-induced IPF mice with 99mTc-labeled NAG-PEI was performed to visualize pulmonary fibrosis and monitor the treatment efficiency of siRNA-loaded NAG-PEI, lipopolysaccharide (LPS, a tolerogenic adjuvant), or zymosan (ZYM, an immunostimulant). The lung uptakes of 99mTc-NAG-PEI in the BM- and silica-induced IPF mice were clearly and directly correlated with IPF progression. The lung uptake of 99mTc-NAG-PEI in the NAG-PEI/TGF-ß1-siRNA treatment group or LPS treatment group was evidently lower than that in the control group, while the lung uptake of 99mTc-NAG-PEI was significantly higher in the ZYM treatment group compared to that in the control group. These results demonstrate that NAG-PEI is a potent MicroSPECT imaging-guided theranostic platform for IPF diagnosis and therapy.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , Radiofármacos/administración & dosificación , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Vimentina/antagonistas & inhibidores , Acetilglucosamina/administración & dosificación , Acetilglucosamina/química , Animales , Biodiversidad , Bleomicina/administración & dosificación , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/patología , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Polietileneimina/administración & dosificación , Polietileneimina/química , ARN Interferente Pequeño/genética , Radiofármacos/química , Radiofármacos/farmacocinética , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/toxicidad , Tecnecio , Tomografía Computarizada de Emisión de Fotón Único , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo
13.
J Labelled Comp Radiopharm ; 63(14): 597-607, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949414

RESUMEN

Two 18 F-radiolabeled organofluorophosphine fluorides ([18 F]4 and [18 F]7) for chemoselective thiol-conjugation were designed and synthesized via 18 F-19 F isotopic exchange reaction. This simple and rapid radiofluorination produced both 18 F-radiolabeled fluorides in excellent radiochemical yields (>94%) and radiochemical purity. The optimal reaction conditions are 0.05-mg substrate, 0.69 mg of potassium carbonate, and dried [18 F]F- were mixed in 100-µl anhydrous acetonitrile at room temperature for 5 min. Both of [18 F]4 and [18 F]7 showed specificity for thiol-conjugation with cysteine and have been used in the radiosynthesis of c (RGDfC). The [18 F]7 with an adamantanyl-hindered substituent displayed superior in vitro and in vivo stability.


Asunto(s)
Radioisótopos de Flúor/química , Péptidos/química , Fosfinas/química , Fosfinas/síntesis química , Marcaje Isotópico , Radioquímica
14.
Mol Pharm ; 16(2): 816-824, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30604976

RESUMEN

In this study, radioiodinated 4-( p-iodophenyl)butyric acid ([131I]IBA) was synthesized and evaluated as a portable albumin-binder for potential applications in single photon emission computed tomography imaging of blood pool, tumor, and lymph node with significantly improved pharmacokinetic properties. The [131I]IBA was prepared under the catalyst of Cu2O/1,10-phenanthroline. After that, the albumin-binding capability of [131I]IBA was tested in vitro, ex vivo, and in vivo, respectively. [131I]IBA was obtained with very high radiolabeling yield (>99%) and good radiochemical purity (>98%) within 10 min. It binds to albumin effectively with high affinity (IC50= 46.5 µM) and has good stability. The results of biodistribution indicated that the [131I]IBA was mainly accumulated in blood with good retention (10.51 ± 2.58%ID/g at 30 min p.i. and 4.63 ± 0.17%ID/g at 4 h p.i.). In the SPECT imaging of mice models with [131I]IBA, blood pool, lymph node, and tumors could be imaged clearly with high target-to-background ratio. Overall, the radioiodinated albumin binder of [131I]IBA with long blood half-life and excellent stability could be used to decorate diversified albumin-binding radioligands and developed as a versatile theranostic agent.


Asunto(s)
Albúminas/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Yodo/química , Ratones , Ratones Endogámicos BALB C , Octanoles/química , Radioquímica , Agua/química
15.
J Labelled Comp Radiopharm ; 62(7): 301-309, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31032992

RESUMEN

A novel 131 I-radiolabeled probe with aromatic boronate motif (131 I-EIPBA) was designed to target progesterone receptor (PR)-positive breast cancer with enhanced nucleus uptake. Acetylene progesterone was conjugated with pegylated phenylboronic acid via click reaction and radiolabeled with 131 I to afford 131 I-EIPBA. Meanwhile, 131 I-EIPB without boronate was prepared as control agent. After determination of the lipophilicity and stability of these tracers, in vitro cell uptake studies and in vivo biodistribution in rats were performed to verify the enhanced nucleus uptake and PR targeting ability of 131 I-EIPBA. 131 I-EIPBA was obtained with moderate radiochemical yield (40.35 ± 3.52%) and high radiochemical purity (>98%). As expected, the high binding affinity (39.58 nM) of 131 I-EIPBA for PR was determined by cell binding assay. The internalization ratio of 131 I-EIPBA was remarkably higher than that of 131 I-EIPB in PR-positive MCF-7 cells. Furthermore, the enhanced nucleus uptake of 131 I-EIPBA (0.59 ± 0.02%) was found to be significantly higher than that of 131 I-EIPB (0.13 ± 0.01%) in MCF-7 cells. A novel 131 I-EIPBA compound was developed for PR targeting with improved cellular nucleus uptake. Furthermore, the introduction of aromatic boronate motif provides a worthwhile strategy for enhancing the nuclear receptor targeting of tracers.


Asunto(s)
Ácidos Borónicos/química , Núcleo Celular/metabolismo , Radioisótopos de Yodo/química , Progesterona/química , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Transporte Activo de Núcleo Celular , Animales , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Marcaje Isotópico , Células MCF-7 , Polietilenglicoles/química , Progesterona/farmacocinética , Radioquímica , Ratas , Ratas Sprague-Dawley , Distribución Tisular
16.
Nano Lett ; 18(11): 7330-7342, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30339753

RESUMEN

Without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment, cancer immunotherapy generally offers limited clinical benefit for established tumors. Tumor-associated macrophages (TAMs) are the critical driver of this immunosuppressive tumor microenvironment, which also promotes tumor metastasis. Here we successfully reprogrammed TAMs to an antitumor M1 phenotype using precision nanoparticle-based reactive oxygen species photogeneration, which demonstrated superior efficiency and efficacy over lipopolysaccharide stimulation. Meanwhile, antigen presentation and T-cell-priming by TAMs were enhanced by inhibiting lysosomal proton pump and proteolytic activity or by promoting tumor associated antigen release in the cytoplasm. The reprogrammed TAMs orchestrate cytotoxic lymphocyte (CTL) recruitment in the tumor and direct memory T-cells toward tumoricidal responses. This strategy could effectively eradicate tumors, inhibit metastasis, and further prevent their recurrence, which holds tremendous promise to realize potent cancer immunotherapy.


Asunto(s)
Reprogramación Celular , Inmunoterapia , Macrófagos/inmunología , Neoplasias Mamarias Animales/inmunología , Neoplasias Mamarias Animales/terapia , Nanopartículas/uso terapéutico , Especies Reactivas de Oxígeno/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Antígenos de Neoplasias/inmunología , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/inmunología , Femenino , Memoria Inmunológica , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
17.
Anal Chem ; 90(15): 9614-9620, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29996650

RESUMEN

The purpose of this study is to develop a specific CXCR4-targeting radioiodinated agent (125I- or 131I-pentixather) for single-photon-emission-computed-tomography (SPECT) imaging of CXCR4 expression in myocardial-infarction-reperfusion (MI/R) rat models. After SPECT-CT imaging with 125I-pentixather at 4, 12, and 36 h and 3 and 7 days after MI/R, the models were validated by ex vivo autoradiography, TTC staining, and immunohistochemistry and in vivo echocardiography and classical 99mTc-MIBI perfusion imaging. The SPECT-CT images showed that the infarcted myocardium (IM) could be visualized with high quality as early as 4 h and reached the maximum at 3 days after MI/R and that CXCR4 upregulation was still visible at 7 days after MI/R. In the biodistribution study, high uptakes in the IM (0.99 ± 0.13, 1.52 ± 0.29, 1.75 ± 0.22, 1.94 ± 0.27, and 0.61 ± 0.14% ID/g at 4, 12, and 36 h and 3 and 7 days after MI/R, respectively) were observed that were much higher than that of normal myocardium. The highest uptake was reached at 3 days after MI/R, which agreed well with the SPECT results. In addition, the radioactivity uptakes of the IM in both the biodistribution and SPECT imaging could be blocked effectively by excess amounts of AMD3465, indicating the high specificity of radioiodinated pentixather to CXCR4. On the basis of its promising properties, 125I-pentixather may serve as a powerful CXCR4-expression diagnostic probe for evaluating lesions and monitoring therapy responses in patients with cardiovascular diseases.


Asunto(s)
Radioisótopos de Yodo/química , Isótopos/química , Infarto del Miocardio/diagnóstico por imagen , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Receptores CXCR4/análisis , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Corazón/diagnóstico por imagen , Radioisótopos de Yodo/farmacocinética , Isótopos/farmacocinética , Masculino , Ratas , Ratas Wistar
18.
Bioconjug Chem ; 29(2): 467-472, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29376327

RESUMEN

We report a novel thiol selective radioiodination method based on strain-release reaction. A new heterobifunctional radioiodination agent which has very good thiol selectivity and excellent stability with high radiolabeling yield was synthesized, characterized, and applied successfully for thiol-contained peptide labeling.


Asunto(s)
Radioisótopos de Yodo/química , Maleimidas/química , Péptidos Cíclicos/química , Compuestos de Sulfhidrilo/química , Animales , Marcaje Isotópico/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos
19.
Mol Pharm ; 14(11): 3780-3788, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28969422

RESUMEN

This study aims to develop a new folate receptor (FR)-targeting agent for SPECT imaging with improved contrast and evaluate the modification strategies of multimerization and/or PEGylation in the development of new radio-folates. A series of novel folate derivatives have been synthesized and radiolabeled with 99mTc using tricine and TPPTS as coligands. To better investigate their pharmacokinetics, cell uptake, biodistribution, and microSPECT/CT imaging were evaluated. Four radioligands displayed high KB cell uptake after incubation for 2 and 4 h. Presaturated with excess folic acid (FA) resulted in a significant blocking effect in KB cells, indicating specificity of these radioligands toward FR. Biodistribution and microSPECT imaging studies in KB tumor-bearing mice showed that the folate conjugate 99mTc-HYNFA with poly(ethylene glycol) (PEG) and triazole linkage displayed the highest tumor uptake (16.30 ± 2.01 %ID/g at 2 h p.i. and 14.9 ± 0.62 %ID/g at 4 h p.i. in mice biodistribution) and best imaging contrast, indicating promising application prospect. More interestingly, the in vivo performance of this monomeric 99mTc-HYNFA was much better than that of FA multimers and non-PEGylated monomers, suggesting that multimerization may not be a feasible method for the design of radio-folates. PEG linkage rather than FA multimerization should be taken into consideration in the development of folate-based radiopharmaceuticals in the future.


Asunto(s)
Ácido Fólico/química , Compuestos de Organotecnecio/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Receptores de Folato Anclados a GPI/química , Receptores de Folato Anclados a GPI/metabolismo , Humanos
20.
Mol Imaging ; 152016.
Artículo en Inglés | MEDLINE | ID: mdl-27941121

RESUMEN

The aim of this study is to develop a copolymer-based single-photon emission computed tomography/magnetic resonance (SPECT/MR) dual-modality imaging agent that can be labeled with both technetium-99m (99mTc) and gadolinium (Gd) and target asialoglycoprotein receptor (ASGPR) via galactose. Monomers of N-p-vinylbenzyl-6-(2-(4-dimethylamino)benzaldehydehydrazono) nicotinate (VNI) for labeling of 99mTc, 5,8-bis(carboxymethyl)-3-oxo-11-(2-oxo-2-((4-vinylbenzyl)amino)ethyl)-1-(4-vinylphenzyl)-2,5,8,11-tetraazatridecan-13-oic acid (V2DTPA) for labeling of Gd, and vinylbenzyl-O-ß-d-galactopyranosyl-d-gluconamide (VLA) for targeting ASGPR were synthesized, respectively. Then the copolymer P(VLA-co-VNI-co-V2DTPA) (pVLND2) was synthesized and characterized by gel permeation chromatography, dynamic light scattering, and high-performance liquid chromatography analysis. After labeling with 99mTc and Gd simultaneously, the radiochemical purity, toxicity, relaxivity (r1), and in vivo SPECT/MR imaging in mice were evaluated. Single-photon emission computed tomography/magnetic resonance imaging and biodistribution results showed that pVLND2 could target ASGPR well. The significantly improved signal to noise ratio was observed in mice liver during MR imaging. All the results suggest that this novel kind of copolymer has the potential to be further developed as a functional SPECT/MR imaging agent.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Tetracloruro de Carbono/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Polímeros/síntesis química , Polímeros/farmacocinética , Radiofármacos/química , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Femenino , Gadolinio/química , Imagen por Resonancia Magnética , Ratones , Polímeros/química , Relación Señal-Ruido , Tecnecio/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA