Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(26): E5896-E5905, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891721

RESUMEN

Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicine Scutellaria baicalensis, has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Hígado Graso , Flavonoides/farmacología , Hígado/enzimología , Mitocondrias Hepáticas/enzimología , Obesidad , Proteómica , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Dieta/efectos adversos , Activación Enzimática/efectos de los fármacos , Hígado Graso/inducido químicamente , Hígado Graso/enzimología , Hígado Graso/patología , Hígado Graso/prevención & control , Células HeLa , Humanos , Hígado/patología , Ratones , Mitocondrias Hepáticas/patología , Obesidad/inducido químicamente , Obesidad/enzimología , Obesidad/prevención & control
2.
ACS Chem Biol ; 17(9): 2461-2470, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36049085

RESUMEN

Bile acids (BAs) are a class of endogenous metabolites with important functions. As amphipathic molecules, BAs have strong antibacterial effects, preventing overgrowth of the gut microbiota and defending the invasion of pathogens. However, some disease-causing pathogens can survive the BA stress and knowledge is limited about how they develop BA tolerance. In this work, we applied a quantitative chemoproteomic strategy to profile BA-interacting proteins in bacteria, aiming to discover the sensing pathway of BAs. Using a clickable and photo-affinity BA probe with quantitative mass spectrometry, we identified a list of histidine kinases (HKs) of the two-component systems (TCS) in bacteria as the novel binding targets of BA. Genetic screening revealed that knocking out one specific HK, EnvZ, renders bacteria with significant sensitivity to BA. Further biochemical and genetic experiments demonstrated that BA binds to a specific pocket in EnvZ and activates a downstream signaling pathway to help efflux of BA from bacteria, resulting in BA tolerance. Collectively, our data revealed that EnvZ is a novel sensor of BA in bacteria and its associated TCS signaling pathway plays a critical role in mediating bacterial BA tolerance, which opens new opportunities to combat BA-tolerating pathogens.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Antibacterianos , Bacterias , Histidina
3.
Viruses ; 13(3)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807824

RESUMEN

The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.


Asunto(s)
Proteínas de la Cápside/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Microbiota-Huesped/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Virión/inmunología , Humanos , Desencapsidación Viral
4.
ACS Cent Sci ; 3(5): 501-509, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28573213

RESUMEN

Bile acids (BAs) are a family of endogenous metabolites synthesized from cholesterol in liver and modified by microbiota in gut. Being amphipathic molecules, the major function of BAs is to help with dietary lipid digestion. In addition, they also act as signaling molecules to regulate lipid and glucose metabolism as well as gut microbiota composition in the host. Remarkably, recent discoveries of the dedicated receptors for BAs such as FXR and TGR5 have uncovered a number of novel actions of BAs as signaling hormones which play significant roles in both physiological and pathological conditions. Disorders in BAs' metabolism are closely related to metabolic syndrome and intestinal and neurodegenerative diseases. Though BA-based therapies have been clinically implemented for decades, the regulatory mechanism of BA is still poorly understood and a comprehensive characterization of BA-interacting proteins in proteome remains elusive. We herein describe a chemoproteomic strategy that uses a number of structurally diverse, clickable, and photoreactive BA-based probes in combination with quantitative mass spectrometry to globally profile BA-interacting proteins in mammalian cells. Over 600 BA-interacting protein targets were identified, including known endogenous receptors and transporters of BA. Analysis of these novel BA-interacting proteins revealed that they are mainly enriched in functional pathways such as endoplasmic reticulum (ER) stress response and lipid metabolism, and are predicted with strong implications with Alzheimer's disease, non-alcoholic fatty liver disease, and diarrhea. Our findings will significantly improve the current understanding of BAs' regulatory roles in human physiology and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA