Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomark Res ; 12(1): 88, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183323

RESUMEN

Platelets are a significant component of the cell population in the tumour microenvironment (TME). Platelets influence other immune cells and perform cross-talk with tumour cells, playing an important role in tumour development. Extracellular vesicles (EVs) are small membrane vesicles released from the cells into the TME. They can transfer biological information, including proteins, nucleic acids, and metabolites, from secretory cells to target receptor cells. This process affects the progression of various human diseases, particularly cancer. In recent years, several studies have demonstrated that platelet-derived extracellular vesicles (PEVs) can help regulate the malignant biological behaviours of tumours, including malignant proliferation, resistance to cell death, invasion and metastasis, metabolic reprogramming, immunity, and angiogenesis. Consequently, PEVs have been identified as key regulators of tumour progression. Therefore, targeting PEVs is a potential strategy for tumour treatment. Furthermore, the extensive use of nanomaterials in medical research has indicated that engineered PEVs are ideal delivery systems for therapeutic drugs. Recent studies have demonstrated that PEV engineering technologies play a pivotal role in the treatment of tumours by combining photothermal therapy, immunotherapy, and chemotherapy. In addition, aberrant changes in PEVs are closely associated with the clinicopathological features of patients with tumours, which may serve as liquid biopsy markers for early diagnosis, monitoring disease progression, and the prognostic assessment of patients with tumours. A comprehensive investigation into the role and potential mechanisms of PEVs in tumourigenesis may provide novel diagnostic biomarkers and potential therapeutic strategies for treating human tumours.

2.
Cancers (Basel) ; 15(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36900182

RESUMEN

Immune complexity status in the TME has been linked to clinical outcomes in pancreatic ductal adenocarcinoma (PDAC) patients. TME assessments with current cell marker and cell density-based analyses do not identify the original phenotypes of single cells with multilineage selectivity, the functional status of the cells, or cellular spatial information in the tissues. Here, we describe a method that circumvents these problems. The combined strategy of multiplexed IHC with computational image cytometry and multiparameter cytometric quantification allows us to assess multiple lineage-selective and functional phenotypic biomarkers in the TME. Our study revealed that the percentage of CD8+ T lymphoid cells expressing the T cell exhaustion marker PD-1 and the high expression of the checkpoint PD-L1 in CD68+ cells are associated with a poor prognosis. The prognostic value of this combined approach is more significant than that of lymphoid and myeloid cell density analyses. In addition, a spatial analysis revealed a correlation between the abundance of PD-L1+CD68+ tumor-associated macrophages and PD-1+CD8+T cell infiltration, indicating pro-tumor immunity associated with a poor prognosis. These data highlight the implications of practical monitoring for understanding the complexity of immune cells in situ. Digital imaging and multiparameter cytometric processing of cell phenotypes in the TME and tissue architecture can reveal biomarkers and assessment parameters for patient stratification.

3.
Front Immunol ; 14: 1158964, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187730

RESUMEN

An increasing body of evidence has suggested that reprogrammed metabolism plays a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC) by affecting the tumor and stromal cellular components in the tumor microenvironment (TME). By analyzing the KRAS pathway and metabolic pathways, we found that calcium and integrin-binding protein 1 (CIB1) corresponded with upregulation of glucose metabolism pathways and was associated with poor prognosis in patients with PDAC from The Cancer Genome Atlas (TCGA). Elevated CIB1 expression combined with upregulated glycolysis, oxidative phosphorylation (Oxphos), hypoxia pathway activation, and cell cycle promoted PDAC tumor growth and increased tumor cellular com-ponents. Furthermore, we confirmed the mRNA overexpression of CIB1 and co-expression of CIB1 and KRAS mutation in cell lines from the Expression Atlas. Subsequently, immunohistochemistry staining from the Human Protein Atlas (HPA) showed that high expression of CIB1 in tumor cells was associated with an increased tumor compartment and reduced stromal cellular abundance. Furthermore, using multiplexed immunohistochemistry (mIHC), we verified that low stromal abundance was correlated with low infiltration of CD8+ PD-1- T cells which led to suppressed anti-tumor immunity. Overall, our findings identify CIB1 as a metabolic pathway-mediated factor for the restriction of immune cell infiltration in the stromal compartment of PDAC and highlight the potential value of CIB1 as a prognostic biomarker involved in metabolic reprogramming and immune modulation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Calcio/metabolismo , Carcinoma Ductal Pancreático/patología , Glucosa , Integrinas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA