Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36560334

RESUMEN

As the technology of Internet of Things (IoT) becomes popular, the number of sensor nodes also increases. The network coverage, extensibility, and reliability are also the key points of technical development. To address the challenge of environmental restriction and deployment cost, most sensor nodes are powered by batteries. Therefore, the low-power consumption becomes an important issue because of the finite value of battery capacity. In addition, significant interference occurs in the environment, thereby complicating reliable wireless communication. This study proposes a fuzzy-based adaptive data rate for the transmission power control in wireless sensor networks to balance the communication quality and power consumption. The error count and error interval perform the inputs of a fuzzy system and the corresponding fuzzy system output is guard that is utilized for limiting the upper bounds of data rate and transmission power. The long-term experimental results are introduced to demonstrate that the control algorithm can overcome environmental interference and obtain low-power performance. The sensor nodes have reliable communication under an ultra-low-power consumption. The experimental results show that the total power consumption of the proposed approach has been improved 73% compared with the system without executing the algorithm and also indicate the Packet Error Rate (PER) is close to 1%. Therefore, the proposed method is suitable for the battery supply IoT system.

2.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053700

RESUMEN

Most Internet of Things (IoT) systems are based on the wireless sensor network (WSN) due to the reduction of the cable layout cost. However, the battery life of nodes is a key issue when the node is powered by a battery. A Low-Power WSN Protocol with ADR and TP Hybrid Control is proposed in this paper to improve battery life significantly. Besides, techniques including the Sub-1GHz star topology network with Time Division Multiple Access (TDMA), adaptive data rate (ADR), and transmission power control (TPC) are also used. The long-term testing results show that the nodes with the proposed algorithm can balance the communication quality and low power consumption simultaneously. The experimental results also show that the power consumption of the node with the algorithm was reduced by 38.46-54.44% compared with the control group. If using AAA battery with 1200 mAh, the node could run approximately 4.2 years with the proposed hybrid control algorithm with an acquisition period of under 5 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA