Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(17): 9604-9612, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284405

RESUMEN

Mature locomotion involves modular spinal drives generating a set of fundamental patterns of motoneuron activation, each timed at a specific phase of locomotor cycles and associated with a stable muscle synergy. How locomotor modules develop and to what extent they depend on prior experience or intrinsic programs remains unclear. To address these issues, we herein leverage the presence at birth of two types of locomotor-like movements, spontaneous kicking and weight-bearing stepping. The former is expressed thousands of times in utero and postnatally, whereas the latter is elicited de novo by placing the newborn on the ground for the first time. We found that the neuromuscular modules of stepping and kicking differ substantially. Neonates kicked with an adult-like number of temporal activation patterns, which lacked a stable association with systematic muscle synergies across movements. However, on the ground neonates stepped with fewer temporal patterns but all structured in stable synergies. Since kicking and ground-stepping coexist at birth, switching between the two behaviors may depend on a dynamic reconfiguration of the underlying neural circuits as a function of sensory feedback from surface contact. We tracked the development of ground-stepping in 4- to 48-mo-old infants and found that, after the age of 6 mo, the number of temporal patterns increased progressively, reaching adult-like conformation only after independent walking was established. We surmise that mature locomotor modules may derive by combining the multiple patterns of repeated kicking, on the one hand, with synergies resulting from fractionation of those revealed by sporadic weight-bearing stepping, on the other hand.


Asunto(s)
Desarrollo Infantil/fisiología , Locomoción/fisiología , Músculo Esquelético/fisiología , Preescolar , Análisis por Conglomerados , Electromiografía , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Músculo Esquelético/inervación , Caminata , Soporte de Peso
2.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957264

RESUMEN

Recent advances in the performance and evaluation of walking in exoskeletons use various assessments based on kinematic/kinetic measurements. While such variables provide general characteristics of gait performance, only limited conclusions can be made about the neural control strategies. Moreover, some kinematic or kinetic parameters are a consequence of the control implemented on the exoskeleton. Therefore, standard indicators based on kinematic variables have limitations and need to be complemented by performance measures of muscle coordination and control strategy. Knowledge about what happens at the spinal cord output level might also be critical for rehabilitation since an abnormal spatiotemporal integration of activity in specific spinal segments may result in a risk for abnormalities in gait recovery. Here we present the PEPATO software, which is a benchmarking solution to assess changes in the spinal locomotor output during walking in the exoskeleton with respect to reference data on normal walking. In particular, functional and structural changes at the spinal cord level can be mapped into muscle synergies and spinal maps of motoneuron activity. A user-friendly software interface guides the user through several data processing steps leading to a set of performance indicators as output. We present an example of the usage of this software for evaluating walking in an unloading exoskeleton that allows a person to step in simulated reduced (the Moon's) gravity. By analyzing the EMG activity from lower limb muscles, the algorithms detected several performance indicators demonstrating differential adaptation (shifts in the center of activity, prolonged activation) of specific muscle activation modules and spinal motor pools and increased coactivation of lumbar and sacral segments. The software is integrated at EUROBENCH facilities to benchmark the performance of walking in the exoskeleton from the point of view of changes in the spinal locomotor output.


Asunto(s)
Dispositivo Exoesqueleto , Marcha/fisiología , Humanos , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Caminata/fisiología
3.
Biology (Basel) ; 12(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37237537

RESUMEN

Manifestation of muscle reactions at an early developmental stage may reflect the processes underlying the generation of appropriate muscle tone, which is also an integral part of all movements. In preterm infants, some aspects of muscular development may occur differently than in infants born at term. Here we evaluated early manifestations of muscle tone by measuring muscle responses to passive stretching (StR) and shortening (ShR) in both upper and lower limbs in preterm infants (at the corrected age from 0 weeks to 12 months), and compared them to those reported in our previous study on full-term infants. In a subgroup of participants, we also assessed spontaneous muscle activity during episodes of relatively large limb movements. The results showed very frequent StR and ShR, and also responses in muscles not being primarily stretched/shortened, in both preterm and full-term infants. A reduction of sensorimotor responses to muscle lengthening and shortening with age suggests a reduction in excitability and/or the acquisition of functionally appropriate muscle tone during the first year of life. The alterations of responses during passive and active movements in preterm infants were primarily seen in the early months, perhaps reflecting temporal changes in the excitability of the sensorimotor networks.

4.
Biology (Basel) ; 11(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35625435

RESUMEN

The state and excitability of pattern generators are attracting the increasing interest of neurophysiologists and clinicians for understanding the mechanisms of the rhythmogenesis and neuromodulation of the human spinal cord. It has been previously shown that tonic sensory stimulation can elicit non-voluntary stepping-like movements in non-injured subjects when their limbs were placed in a gravity-neutral unloading apparatus. However, large individual differences in responsiveness to such stimuli were observed, so that the effects of sensory neuromodulation manifest only in some of the subjects. Given that spinal reflexes are an integral part of the neuronal circuitry, here we investigated the extent to which spinal pattern generation excitability in response to the vibrostimulation of muscle proprioceptors can be related to the H-reflex magnitude, in both the lower and upper limbs. For the H-reflex measurements, three conditions were used: stationary limbs, voluntary limb movement and passive limb movement. The results showed that the H-reflex was considerably higher in the group of participants who demonstrated non-voluntary rhythmic responses than it was in the participants who did not demonstrate them. Our findings are consistent with the idea that spinal reflex measurements play important roles in assessing the rhythmogenesis of the spinal cord.

5.
Front Physiol ; 10: 1158, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607940

RESUMEN

Muscle tone represents one of the important concepts for characterizing changes in the state of the developing nervous system. It can be manifested in the level of activity of flexors and extensors and in muscle reactions to its passive stretching (StR) or shortening (ShR). Here we investigated such reactions in a cohort of healthy infants aged from 2 weeks to 12 months. We examined the presence and the characteristics of StR and ShR during slow passive cyclic flexion/extension movements (T~3 s) in the hip, knee, ankle, and elbow joints while awake infants were in the supine position. The results showed that most infants demonstrated prominent ShRs in response to passive joint rotations, although the StR was observed more frequently, suggesting that the ShR is an important component of adaptive motor behavior already at an early developmental stage. Interestingly, the occurrence of both StR and ShR in most muscles significantly decreased throughout the first year of life. Passive cyclic flexion/extension movements could also evoke rhythmic muscle responses in other joints or in the contralateral limb, however, such responses were predominantly observed in younger infants (<6 months). A noticeable manifestation of muscle reactions at an early developmental stage, along with spontaneous motor activity in this period of life, may reflect the processes underlying a formation of appropriate muscle tone and the self-organization of neural circuits. A substantial reduction of ipsilateral and contralateral muscle responses to passive movements with age is consistent with the idea of a functional reorganization of the motor circuitry during early development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA